Whole-exome sequencing identifies mutations in GPR179 leading to autosomal-recessive complete congenital stationary night blindness.

Congenital stationary night blindness (CSNB) is a heterogeneous retinal disorder characterized by visual impairment under low light conditions. This disorder is due to a signal transmission defect from rod photoreceptors to adjacent bipolar cells in the retina. Two forms can be distinguished clinically, complete CSNB (cCSNB) or incomplete CSNB; the two forms are distinguished on the basis of the affected signaling pathway. Mutations in NYX, GRM6, and TRPM1, expressed in the outer plexiform layer (OPL) lead to disruption of the ON-bipolar cell response and have been seen in patients with cCSNB. Whole-exome sequencing in cCSNB patients lacking mutations in the known genes led to the identification of a homozygous missense mutation (c.1807C>T [p.His603Tyr]) in one consanguineous autosomal-recessive cCSNB family and a homozygous frameshift mutation in GPR179 (c.278delC [p.Pro93Glnfs(∗)57]) in a simplex male cCSNB patient. Additional screening with Sanger sequencing of 40 patients identified three other cCSNB patients harboring additional allelic mutations in GPR179. Although, immunhistological studies revealed Gpr179 in the OPL in wild-type mouse retina, Gpr179 did not colocalize with specific ON-bipolar markers. Interestingly, Gpr179 was highly concentrated in horizontal cells and Müller cell endfeet. The involvement of these cells in cCSNB and the specific function of GPR179 remain to be elucidated.

Olivier Poch | Sabine Defoort-Dhellemmes | Xavier Zanlonghi | Odile Lecompte | Markus Preising | Christoph Friedburg | Birgit Lorenz | Eberhart Zrenner | José-Alain Sahel | Thierry Léveillard | Dominique Bonneau | Susanne Kohl | Bernd Wissinger | Christelle Michiels | Christina Zeitz | Katrina Prescott | Hélène Dollfus | Saddek Mohand-Saïd | T. Léveillard | J. Sahel | S. Jacobson | T. de Ravel | B. Lorenz | K. Prescott | E. Zrenner | D. Sharon | W. Berger | S. Bhattacharya | I. Casteels | D. Bonneau | O. Poch | H. Dollfus | O. Lecompte | D. Schorderet | C. Friedburg | M. Preising | V. Moskova-Doumanova | B. Wissinger | F. Meire | F. Munier | I. Audo | S. Mohand-Saïd | J. Saraiva | M. Letexier | S. Kohl | E. Banin | U. Kellner | R. Koenekoop | C. Hamel | B. Leroy | A. Renner | X. Zanlonghi | G. Le Meur | K. Bujakowska | C. Poloschek | C. Zeitz | Elise Orhan | C. Michiels | A. Antonio | Claire Audier | Tien-Dao Luu | Hoan Nguyen | Samuel G Jacobson | Christian P Hamel | Kinga Bujakowska | Elise Orhan | Marie-Elise Lancelot | Aline Antonio | Claire Audier | Mélanie Letexier | Jean-Paul Saraiva | Tien D Luu | Hoan Nguyen | Shomi S Bhattacharya | Isabelle Audo | Eyal Banin | Dror Sharon | Bart P Leroy | Elfride De Baere | Francis L Munier | Wolfgang Berger | Charlotte M Poloschek | Robert Koenekoop | Thomy de Ravel | Daniel F Schorderet | Ulrich Kellner | Isabelle Drumare | Aurore Germain | Agnes B Renner | Veselina Moskova-Doumanova | Guylene Le Meur | Ingele Casteels | Vernon W Long | Francoise Meire | Ian Simmons | Kim Nguyen-Ba-Charvet | A. Germain | I. Simmons | K. Nguyen-Ba-Charvet | V. Long | I. Drumare | Marie‐Elise Lancelot | E. de Baere | S. Defoort‐Dhellemmes

[1]  S. Shalev,et al.  Autosomal-recessive early-onset retinitis pigmentosa caused by a mutation in PDE6G, the gene encoding the gamma subunit of rod cGMP phosphodiesterase. , 2010, American journal of human genetics.

[2]  María Martín,et al.  The Universal Protein Resource (UniProt) in 2010 , 2010 .

[3]  Makoto Nakamura,et al.  TRPM1 mutations are associated with the complete form of congenital stationary night blindness , 2010, Molecular vision.

[4]  S. Picaud,et al.  Differential distribution of dystrophins in rat retina. , 1999, Investigative ophthalmology & visual science.

[5]  Christina Zeitz,et al.  Night blindness–associated mutations in the ligand‐binding, cysteine‐rich, and intracellular domains of the metabotropic glutamate receptor 6 abolish protein trafficking , 2007, Human mutation.

[6]  G. Holder,et al.  The negative ERG: clinical phenotypes and disease mechanisms of inner retinal dysfunction. , 2008, Survey of ophthalmology.

[7]  G. Fishman,et al.  A substitution of G to C in the cone cGMP-phosphodiesterase gamma subunit gene found in a distinctive form of cone dystrophy. , 2005, Ophthalmology.

[8]  R. Sidman,et al.  Differential effect of the rd mutation on rods and cones in the mouse retina. , 1978, Investigative ophthalmology & visual science.

[9]  M. Kondo,et al.  Scotopic threshold response in complete and incomplete types of congenital stationary night blindness. , 1994, Investigative ophthalmology & visual science.

[10]  F. Tremblay,et al.  Correlation between electroretinogram findings and molecular analysis in the Duchenne muscular dystrophy phenotype. , 1994, The British journal of ophthalmology.

[11]  G. Chader,et al.  Photoreceptor-specific mRNAs in mice carrying different allelic combinations at the rd and rds loci. , 1992, Experimental eye research.

[12]  D. Harris,et al.  The effects of dystrophin gene mutations on the ERG in mice and humans. , 1993, Investigative ophthalmology & visual science.

[13]  J. Sahel,et al.  Genotyping microarray for CSNB-associated genes. , 2009, Investigative ophthalmology & visual science.

[14]  H. Lester,et al.  Genetic Inactivation of an Inwardly Rectifying Potassium Channel (Kir4.1 Subunit) in Mice: Phenotypic Impact in Retina , 2000, The Journal of Neuroscience.

[15]  M. Kamermans,et al.  Nyctalopin expression in retinal bipolar cells restores visual function in a mouse model of complete X-linked congenital stationary night blindness. , 2007, Journal of neurophysiology.

[16]  E. Zrenner,et al.  Mutation in the auxiliary calcium-channel subunit CACNA2D4 causes autosomal recessive cone dystrophy. , 2006, American journal of human genetics.

[17]  V. Plagnol,et al.  Recessive mutations in KCNJ13, encoding an inwardly rectifying potassium channel subunit, cause leber congenital amaurosis. , 2011, American journal of human genetics.

[18]  S. Jacobson,et al.  Mutations in NYX, encoding the leucine-rich proteoglycan nyctalopin, cause X-linked complete congenital stationary night blindness , 2000, Nature Genetics.

[19]  F. Riemslag,et al.  Mutations in GRM6 cause autosomal recessive congenital stationary night blindness with a distinctive scotopic 15-Hz flicker electroretinogram. , 2005, Investigative ophthalmology & visual science.

[20]  S. Henikoff,et al.  Predicting deleterious amino acid substitutions. , 2001, Genome research.

[21]  E. Zrenner,et al.  Mutations in CABP4, the gene encoding the Ca2+-binding protein 4, cause autosomal recessive night blindness. , 2006, American journal of human genetics.

[22]  C. Zeitz Molecular genetics and protein function involved in nocturnal vision , 2007 .

[23]  C. Westall,et al.  Dystrophin expression in the human retina is required for normal function as defined by electroretinography , 1993, Nature Genetics.

[24]  Kenneth R Alexander,et al.  Night blindness and abnormal cone electroretinogram ON responses in patients with mutations in the GRM6 gene encoding mGluR6. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[25]  J. Sahel,et al.  Targeted inactivation of dystrophin gene product Dp71: phenotypic impact in mouse retina. , 2003, Human molecular genetics.

[26]  Thomas L. Madden,et al.  Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. , 1997, Nucleic acids research.

[27]  K. Yagasaki,et al.  Congenital stationary night blindness with negative electroretinogram. A new classification. , 1986 .

[28]  M. Kamermans,et al.  Mutations in TRPM1 are a common cause of complete congenital stationary night blindness. , 2009, American journal of human genetics.

[29]  M. Sandberg,et al.  Defects in RGS9 or its anchor protein R9AP in patients with slow photoreceptor deactivation , 2004, Nature.

[30]  M. Kamermans,et al.  GPR179 is required for depolarizing bipolar cell function and is mutated in autosomal-recessive complete congenital stationary night blindness. , 2012, American journal of human genetics.

[31]  J. Shendure,et al.  Exome sequencing as a tool for Mendelian disease gene discovery , 2011, Nature Reviews Genetics.

[32]  T. Léveillard,et al.  TRPM1 is mutated in patients with autosomal-recessive complete congenital stationary night blindness. , 2009, American journal of human genetics.

[33]  A. Sali,et al.  How well can the accuracy of comparative protein structure models be predicted? , 2008, Protein science : a publication of the Protein Society.

[34]  R. Duvoisin,et al.  TRPM1 is required for the depolarizing light response in retinal ON-bipolar cells , 2009, Proceedings of the National Academy of Sciences.

[35]  P. Kofuji,et al.  Potassium channel Kir4.1 macromolecular complex in retinal glial cells , 2006, Glia.

[36]  P. Ray,et al.  Duchenne/Becker muscular dystrophy: correlation of phenotype by electroretinography with sites of dystrophin mutations , 1999, Human Genetics.

[37]  P Sterling,et al.  Localization of mGluR6 to dendrites of ON bipolar cells in primate retina , 2000, The Journal of comparative neurology.

[38]  C. Scharfe,et al.  The complete form of X-linked congenital stationary night blindness is caused by mutations in a gene encoding a leucine-rich repeat protein , 2000, Nature Genetics.

[39]  M. Bach,et al.  ISCEV Standard for full-field clinical electroretinography (2008 update) , 2009, Documenta Ophthalmologica.

[40]  G. Holder,et al.  Recessive mutations of the gene TRPM1 abrogate ON bipolar cell function and cause complete congenital stationary night blindness in humans. , 2009, American journal of human genetics.

[41]  Olivier Poch,et al.  SM2PH‐db: an interactive system for the integrated analysis of phenotypic consequences of missense mutations in proteins involved in human genetic diseases , 2010, Human mutation.

[42]  Olivier Poch,et al.  PipeAlign: a new toolkit for protein family analysis , 2003, Nucleic Acids Res..

[43]  A. Verkman,et al.  Mildly abnormal retinal function in transgenic mice without Müller cell aquaporin-4 water channels. , 2002, Investigative ophthalmology & visual science.

[44]  M. Tachibana,et al.  TRPM1 is a component of the retinal ON bipolar cell transduction channel in the mGluR6 cascade , 2009, Proceedings of the National Academy of Sciences of the United States of America.

[45]  L. Akileswaran,et al.  Localization of nyctalopin in the mammalian retina , 2006, The European journal of neuroscience.

[46]  G. Schubert,et al.  Beitrag zur Analyse des menschlichen Elektroretinogramms , 1952 .

[47]  Narayanan Eswar,et al.  Protein structure modeling with MODELLER. , 2008, Methods in molecular biology.