Inter-image outliers and their application to image classification

Image variability that is impossible or difficult to restore by intra-image processing, such as the variability caused by occlusions, significantly reduces the performance of image-recognition methods. To address this issue, we propose that the pixels associated with large distances obtained by inter-image pixel-by-pixels comparisons should be considered as inter-image outliers and should be removed from the similarity calculation used for the image classification. When this method is combined with the template-matching method for image recognition, it leads to state-of-the-art recognition performance: 91% with AR database that includes occluded face images, 90% with PUT database that includes pose variations of face images and 100% with EYale B database that includes images with large illumination variation.

[1]  Marian Stewart Bartlett,et al.  Face recognition by independent component analysis , 2002, IEEE Trans. Neural Networks.

[2]  William Grimson,et al.  Object recognition by computer - the role of geometric constraints , 1991 .

[3]  David J. Kriegman,et al.  Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection , 1996, ECCV.

[4]  Chang-Tien Lu,et al.  Spatial Outlier Detection: A Graph-Based Approach , 2007, 19th IEEE International Conference on Tools with Artificial Intelligence(ICTAI 2007).

[5]  Baba C. Vemuri,et al.  Shape Modeling with Front Propagation: A Level Set Approach , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[6]  David W. Jacobs,et al.  In search of illumination invariants , 2001, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[7]  Richard O. Duda,et al.  Use of the Hough transformation to detect lines and curves in pictures , 1972, CACM.

[8]  Shimon Ullman,et al.  Limitations of Non Model-Based Recognition Schemes , 1992, ECCV.

[9]  M. Turk,et al.  Eigenfaces for Recognition , 1991, Journal of Cognitive Neuroscience.

[10]  David Beymer,et al.  Face recognition from one example view , 1995, Proceedings of IEEE International Conference on Computer Vision.

[11]  Oscar Déniz-Suárez,et al.  Face recognition using independent component analysis and support vector machines , 2001, Pattern Recognit. Lett..

[12]  Robert H. Kushler,et al.  Exploratory Data Analysis With MATLAB® , 2006, Technometrics.

[13]  Ming-Kuei Hu,et al.  Visual pattern recognition by moment invariants , 1962, IRE Trans. Inf. Theory.

[14]  Shashi Shekhar,et al.  Detecting graph-based spatial outliers: algorithms and applications (a summary of results) , 2001, KDD '01.

[15]  Azriel Rosenfeld,et al.  Face recognition: A literature survey , 2003, CSUR.

[16]  Guodong Guo,et al.  Face, expression, and iris recognition using learning-based approaches: computational recognition of identity and activity , 2008 .

[17]  Harvey F. Silverman,et al.  A Class of Algorithms for Fast Digital Image Registration , 1972, IEEE Transactions on Computers.

[18]  A. Yuille,et al.  Two- and Three-Dimensional Patterns of the Face , 2001 .

[19]  Tian Zhang,et al.  BIRCH: an efficient data clustering method for very large databases , 1996, SIGMOD '96.

[20]  Harry Wechsler,et al.  Reliable Face Recognition Methods , 2007 .

[21]  Ronen Basri,et al.  Comparing images under variable illumination , 1998, Proceedings. 1998 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No.98CB36231).

[22]  Aleix M. Martinez,et al.  The AR face database , 1998 .

[23]  Xiaoying Qi Face , 2011, Definitions.

[24]  Wen Gao,et al.  Efficient 3D reconstruction for face recognition , 2005, Pattern Recognit..

[25]  Dana H. Ballard,et al.  Generalizing the Hough transform to detect arbitrary shapes , 1981, Pattern Recognit..

[26]  Laurent D. Cohen,et al.  On active contour models and balloons , 1991, CVGIP Image Underst..

[27]  Alan L. Yuille,et al.  Feature extraction from faces using deformable templates , 2004, International Journal of Computer Vision.

[28]  Thomas Vetter,et al.  Face Recognition Based on Fitting a 3D Morphable Model , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[29]  W. R. Buckland,et al.  Outliers in Statistical Data , 1979 .

[30]  Rama Chellappa,et al.  Face Processing: Advanced Modeling and Methods , 2006, J. Electronic Imaging.

[31]  Joachim M. Buhmann,et al.  Distortion Invariant Object Recognition in the Dynamic Link Architecture , 1993, IEEE Trans. Computers.

[32]  Jian-Huang Lai,et al.  Choosing Parameters of Kernel Subspace LDA for Recognition of Face Images Under Pose and Illumination Variations , 2007, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[33]  Raymond T. Ng,et al.  Algorithms for Mining Distance-Based Outliers in Large Datasets , 1998, VLDB.

[34]  Stefano Soatto,et al.  A Study of Face Recognition as People Age , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[35]  Rama Chellappa,et al.  Face Verification Across Age Progression , 2006, IEEE Transactions on Image Processing.

[36]  A. Martínez,et al.  The AR face databasae , 1998 .

[37]  Roberto Brunelli,et al.  Template Matching Techniques in Computer Vision: Theory and Practice , 2009 .

[38]  David J. Kriegman,et al.  From Few to Many: Illumination Cone Models for Face Recognition under Variable Lighting and Pose , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[39]  Reda Alhajj,et al.  A comprehensive survey of numeric and symbolic outlier mining techniques , 2006, Intell. Data Anal..

[40]  Demetri Terzopoulos,et al.  Snakes: Active contour models , 2004, International Journal of Computer Vision.

[41]  Yajie Tian,et al.  Handbook of face recognition , 2003 .

[42]  Harry Wechsler,et al.  Reliable face recognition methods - system design, implementation and evaluation , 2006 .

[43]  Fabrizio Angiulli,et al.  DOLPHIN: An efficient algorithm for mining distance-based outliers in very large datasets , 2009, TKDD.

[44]  A. Madansky Identification of Outliers , 1988 .

[45]  Tal Hassner,et al.  Multiple One-Shots for Utilizing Class Label Information , 2009, BMVC.

[46]  Jiawei Han,et al.  Efficient and Effective Clustering Methods for Spatial Data Mining , 1994, VLDB.

[48]  James S. Duncan,et al.  Boundary Finding with Parametrically Deformable Models , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[49]  Wen-Chung Kao,et al.  Local contrast enhancement and adaptive feature extraction for illumination-invariant face recognition , 2010, Pattern Recognit..

[50]  Witold Pedrycz,et al.  Face recognition: A study in information fusion using fuzzy integral , 2005, Pattern Recognit. Lett..

[51]  Chang-Tien Lu,et al.  Algorithms for spatial outlier detection , 2003, Third IEEE International Conference on Data Mining.

[52]  Adam Schmidt,et al.  The put face database , 2008 .

[53]  Martin A. Fischler,et al.  The Representation and Matching of Pictorial Structures , 1973, IEEE Transactions on Computers.

[54]  Charles R. Dyer,et al.  Model-based recognition in robot vision , 1986, CSUR.

[55]  Robert J. Baron,et al.  Mechanisms of Human Facial Recognition , 1981, Int. J. Man Mach. Stud..

[56]  C. McGillem,et al.  Experimental examination of similarity measures and preprocessing methods used for image registration , 1976 .

[57]  Vijayalakshmi Atluri,et al.  Spatial outlier detection in heterogeneous neighborhoods , 2009, Intell. Data Anal..

[58]  Hua Yu,et al.  A direct LDA algorithm for high-dimensional data - with application to face recognition , 2001, Pattern Recognit..

[59]  Hans-Peter Kriegel,et al.  A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise , 1996, KDD.

[60]  Raymond T. Ng,et al.  Distance-based outliers: algorithms and applications , 2000, The VLDB Journal.

[61]  Bernard Widrow,et al.  The "Rubber-Mask" Technique I. Pattern Measurement and Analysis , 1973 .

[62]  Tao Hong,et al.  A spatial outlier detection algorithm based multi-attributive correlation , 2004, Proceedings of 2004 International Conference on Machine Learning and Cybernetics (IEEE Cat. No.04EX826).

[63]  Shashi Shekhar,et al.  A Unified Approach to Detecting Spatial Outliers , 2003, GeoInformatica.

[64]  C. Lu A Uniied Approach to Spatial Outliers Detection , 2003 .

[65]  Marwan Mattar,et al.  Labeled Faces in the Wild: A Database forStudying Face Recognition in Unconstrained Environments , 2008 .

[66]  U. Halici,et al.  Intelligent biometric techniques in fingerprint and face recognition , 2000 .

[67]  David J. Kriegman,et al.  Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection , 1996, ECCV.

[68]  Aleix M. Martínez,et al.  Recognizing Imprecisely Localized, Partially Occluded, and Expression Variant Faces from a Single Sample per Class , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[69]  Shimon Ullman,et al.  Face Recognition: The Problem of Compensating for Changes in Illumination Direction , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[70]  Michael G. Strintzis,et al.  Face Recognition , 2008, Encyclopedia of Multimedia.

[71]  Anil K. Jain,et al.  Object Matching Using Deformable Templates , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[72]  Rama Chellappa,et al.  Modeling Age Progression in Young Faces , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[73]  R. Wong,et al.  Scene matching with invariant moments , 1978 .

[74]  Sanjay Chawla,et al.  SLOM: a new measure for local spatial outliers , 2006, Knowledge and Information Systems.

[75]  A. A. El-Harby,et al.  Face Recognition: A Literature Review , 2008 .

[76]  L. Cohen NOTE On Active Contour Models and Balloons , 1991 .

[77]  A. Ardeshir Goshtasby,et al.  Template Matching in Rotated Images , 1985, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[78]  Bernard Widrow,et al.  The "Rubber-Mask" Technique II. Pattern Storage and Recognition , 1973 .