Diversifying microRNA sequence and function

[1]  V. Spiegelman,et al.  MicroRNA-340-mediated degradation of microphthalmia-associated transcription factor mRNA is inhibited by the coding region determinant-binding protein. , 2014, The Journal of Biological Chemistry.

[2]  C. Norbury,et al.  RNA decay via 3' uridylation. , 2013, Biochimica et biophysica acta.

[3]  R. Gregory,et al.  A role for the Perlman syndrome exonuclease Dis3l2 in the Lin28-let-7 pathway , 2013, Nature.

[4]  J. Kjems,et al.  Natural RNA circles function as efficient microRNA sponges , 2013, Nature.

[5]  Sebastian D. Mackowiak,et al.  Circular RNAs are a large class of animal RNAs with regulatory potency , 2013, Nature.

[6]  B. tenOever RNA viruses and the host microRNA machinery , 2013, Nature Reviews Microbiology.

[7]  C. Joo,et al.  Bringing single-molecule spectroscopy to macromolecular protein complexes. , 2013, Trends in biochemical sciences.

[8]  A. Buck,et al.  Regulation of microRNA biogenesis and turnover by animals and their viruses , 2013, Cellular and Molecular Life Sciences.

[9]  C. Fabián Flores-Jasso,et al.  Argonaute Divides Its RNA Guide into Domains with Distinct Functions and RNA-Binding Properties , 2012, Cell.

[10]  Bo W. Han,et al.  Dicer Partner Proteins Tune the Length of Mature miRNAs in Flies and Mammals , 2012, Cell.

[11]  J. Doudna,et al.  TRBP alters human precursor microRNA processing in vitro. , 2012, RNA.

[12]  Hyeshik Chang,et al.  Mono-Uridylation of Pre-MicroRNA as a Key Step in the Biogenesis of Group II let-7 MicroRNAs , 2012, Cell.

[13]  M. Caligiuri,et al.  Essential metabolic, anti-inflammatory, and anti-tumorigenic functions of miR-122 in liver. , 2012, The Journal of clinical investigation.

[14]  Hsien-Da Huang,et al.  MicroRNA-122 plays a critical role in liver homeostasis and hepatocarcinogenesis. , 2012, The Journal of clinical investigation.

[15]  G. Hannon,et al.  The Structure of Human Argonaute-2 in Complex with miR-20a , 2012, Cell.

[16]  R. Sachidanandam,et al.  High-throughput assessment of microRNA activity and function using microRNA sensor and decoy libraries , 2012, Nature Methods.

[17]  D. Bartel,et al.  Structure of yeast Argonaute with guide RNA , 2012, Nature.

[18]  E. Levine,et al.  The let-7–Imp axis regulates ageing of the Drosophila testis stem-cell niche , 2012, Nature.

[19]  I. MacRae,et al.  The Crystal Structure of Human Argonaute2 , 2012, Science.

[20]  Xuemei Chen,et al.  Uridylation of miRNAs by HEN1 SUPPRESSOR1 in Arabidopsis , 2012, Current Biology.

[21]  Xuemei Chen,et al.  The Arabidopsis Nucleotidyl Transferase HESO1 Uridylates Unmethylated Small RNAs to Trigger Their Degradation , 2012, Current Biology.

[22]  R. Green,et al.  miRNA-Mediated Gene Silencing by Translational Repression Followed by mRNA Deadenylation and Decay , 2012, Science.

[23]  A. Giraldez,et al.  Ribosome Profiling Shows That miR-430 Reduces Translation Before Causing mRNA Decay in Zebrafish , 2012, Science.

[24]  Stefan L Ameres,et al.  Long-term, efficient inhibition of microRNA function in mice using rAAV vectors , 2012, Nature Methods.

[25]  E. Lai,et al.  Common and distinct patterns of terminal modifications to mirtrons and canonical microRNAs. , 2012, RNA.

[26]  Charles Gawad,et al.  Circular RNAs Are the Predominant Transcript Isoform from Hundreds of Human Genes in Diverse Cell Types , 2012, PloS one.

[27]  S. Pfeffer,et al.  Degradation of Cellular miR-27 by a Novel, Highly Abundant Viral Transcript Is Important for Efficient Virus Replication In Vivo , 2012, PLoS pathogens.

[28]  S. Chi,et al.  An alternative mode of microRNA target recognition , 2012, Nature Structural &Molecular Biology.

[29]  D. Tollervey,et al.  Murine cytomegalovirus encodes a miR-27 inhibitor disguised as a target , 2011, Proceedings of the National Academy of Sciences.

[30]  Bo W. Han,et al.  The 3′-to-5′ Exoribonuclease Nibbler Shapes the 3′ Ends of MicroRNAs Bound to Drosophila Argonaute1 , 2011, Current Biology.

[31]  Ammar S Naqvi,et al.  The Exoribonuclease Nibbler Controls 3′ End Processing of MicroRNAs in Drosophila , 2011, Current Biology.

[32]  Xuerui Yang,et al.  An Extensive MicroRNA-Mediated Network of RNA-RNA Interactions Regulates Established Oncogenic Pathways in Glioblastoma , 2011, Cell.

[33]  P. Pandolfi,et al.  In Vivo Identification of Tumor- Suppressive PTEN ceRNAs in an Oncogenic BRAF-Induced Mouse Model of Melanoma , 2011, Cell.

[34]  Ferdinando Di Cunto,et al.  Coding-Independent Regulation of the Tumor Suppressor PTEN by Competing Endogenous mRNAs , 2011, Cell.

[35]  D. Cacchiarelli,et al.  A Long Noncoding RNA Controls Muscle Differentiation by Functioning as a Competing Endogenous RNA , 2011, Cell.

[36]  Joerg E Braun,et al.  GW182 proteins directly recruit cytoplasmic deadenylase complexes to miRNA targets. , 2011, Molecular cell.

[37]  E. Lai,et al.  Alternative miRNA biogenesis pathways and the interpretation of core miRNA pathway mutants. , 2011, Molecular cell.

[38]  D. Bartel,et al.  MicroRNA destabilization enables dynamic regulation of the miR-16 family in response to cell-cycle changes. , 2011, Molecular cell.

[39]  P. Pandolfi,et al.  A ceRNA Hypothesis: The Rosetta Stone of a Hidden RNA Language? , 2011, Cell.

[40]  Ayelet T. Lamm,et al.  Competition between ADAR and RNAi pathways for an extensive class of RNA targets , 2011, Nature Structural &Molecular Biology.

[41]  Rachid Karam,et al.  Identification of a microRNA that activates gene expression by repressing nonsense-mediated RNA decay. , 2011, Molecular cell.

[42]  E. Lai,et al.  Vive la différence: biogenesis and evolution of microRNAs in plants and animals , 2011, Genome Biology.

[43]  Phillip D Zamore,et al.  Phosphate and R2D2 restrict the substrate specificity of Dicer-2, an ATP-driven ribonuclease. , 2011, Molecular cell.

[44]  P. Yao,et al.  Repression of VEGFA by CA‐rich element‐binding microRNAs is modulated by hnRNP L , 2011, The EMBO journal.

[45]  Paul J. Hertzog,et al.  Analysis of microRNA turnover in mammalian cells following Dicer1 ablation , 2011, Nucleic acids research.

[46]  H. Grosshans,et al.  Target-mediated protection of endogenous microRNAs in C. elegans. , 2011, Developmental cell.

[47]  Ravi Sachidanandam,et al.  Kinetic Analysis Reveals the Fate of a MicroRNA following Target Regulation in Mammalian Cells , 2011, Current Biology.

[48]  Ammar S Naqvi,et al.  Deep annotation of Drosophila melanogaster microRNAs yields insights into their processing, modification, and emergence. , 2011, Genome research.

[49]  Shuang Huang,et al.  Uracils at nucleotide position 9–11 are required for the rapid turnover of miR-29 family , 2011, Nucleic acids research.

[50]  G. Hannon,et al.  Small RNA sorting: matchmaking for Argonautes , 2011, Nature Reviews Genetics.

[51]  Stefan L Ameres,et al.  Target RNA-directed tailing and trimming purifies the sorting of endo-siRNAs between the two Drosophila Argonaute proteins. , 2011, RNA.

[52]  Phillip A Sharp,et al.  MicroRNA sponges: progress and possibilities. , 2010, RNA.

[53]  Y. Hayashizaki,et al.  A comprehensive survey of 3' animal miRNA modification events and a possible role for 3' adenylation in modulating miRNA targeting effectiveness. , 2010, Genome research.

[54]  S. Klimašauskas,et al.  Kinetic and functional analysis of the small RNA methyltransferase HEN1: the catalytic domain is essential for preferential modification of duplex RNA. , 2010, RNA.

[55]  Hitoshi Sakakibara,et al.  WAVY LEAF1, an Ortholog of Arabidopsis HEN1, Regulates Shoot Development by Maintaining MicroRNA and Trans-Acting Small Interfering RNA Accumulation in Rice1[C][W] , 2010, Plant Physiology.

[56]  E. Lai,et al.  Conserved vertebrate mir-451 provides a platform for Dicer-independent, Ago2-mediated microRNA biogenesis , 2010, Proceedings of the National Academy of Sciences.

[57]  Detlef Weigel,et al.  A Collection of Target Mimics for Comprehensive Analysis of MicroRNA Function in Arabidopsis thaliana , 2010, PLoS genetics.

[58]  B. Bass,et al.  Adar Editing in Double-stranded Utrs and Other Noncoding Rna Sequences , 2022 .

[59]  Gregory J. Hannon,et al.  Diverse endonucleolytic cleavage sites in the mammalian transcriptome depend upon microRNAs, Drosha, and additional nucleases. , 2010, Molecular cell.

[60]  Zhiping Weng,et al.  Target RNA–Directed Trimming and Tailing of Small Silencing RNAs , 2010, Science.

[61]  J. Steitz,et al.  Down-Regulation of a Host MicroRNA by a Herpesvirus saimiri Noncoding RNA , 2010, Science.

[62]  G. Hannon,et al.  A dicer-independent miRNA biogenesis pathway that requires Ago catalysis , 2010, Nature.

[63]  Nicholas T. Ingolia,et al.  Mammalian microRNAs predominantly act to decrease target mRNA levels , 2010, Nature.

[64]  Kyle Kai-How Farh,et al.  Expanding the microRNA targeting code: functional sites with centered pairing. , 2010, Molecular cell.

[65]  C. Nusbaum,et al.  Mammalian microRNAs: experimental evaluation of novel and previously annotated genes. , 2010, Genes & development.

[66]  M. Siomi,et al.  Posttranscriptional regulation of microRNA biogenesis in animals. , 2010, Molecular cell.

[67]  Loyal A Goff,et al.  Differential regulation of microRNA stability. , 2010, RNA.

[68]  Joshua J. Forman,et al.  The code within the code: microRNAs target coding regions , 2010, Cell cycle.

[69]  S. Lemon,et al.  DDX6 (Rck/p54) Is Required for Efficient Hepatitis C Virus Replication but Not for Internal Ribosome Entry Site-Directed Translation , 2010, Journal of Virology.

[70]  Pamela J Green,et al.  Uridylation of mature miRNAs and siRNAs by the MUT68 nucleotidyltransferase promotes their degradation in Chlamydomonas , 2010, Proceedings of the National Academy of Sciences.

[71]  S. Kauppinen,et al.  Therapeutic Silencing of MicroRNA-122 in Primates with Chronic Hepatitis C Virus Infection , 2010, Science.

[72]  Beth Israel,et al.  Decision letter: Replication Study: A coding-independent function of gene and pseudogene mRNAs regulates tumour biology , 2010 .

[73]  Y. Tomari,et al.  Making RISC. , 2010, Trends in biochemical sciences.

[74]  Z. Weng,et al.  Sorting of Drosophila small silencing RNAs partitions microRNA* strands into the RNA interference pathway. , 2010, RNA.

[75]  Satoshi Shibata,et al.  A High-Resolution Structure of the Pre-microRNA Nuclear Export Machinery , 2009, Science.

[76]  D. V. Vactor,et al.  NIH-PA Author Manuscript NIH-PA Author Manuscript NIH-PA Author Manuscript NIH Public Access Author Manuscript Nat Methods. Author manuscript; available in PMC 2011 September 30. , 2009 .

[77]  N. Perrimon,et al.  Hierarchical rules for Argonaute loading in Drosophila. , 2009, Molecular cell.

[78]  E. Lai,et al.  Distinct mechanisms for microRNA strand selection by Drosophila Argonautes. , 2009, Molecular cell.

[79]  David G Hendrickson,et al.  Concordant Regulation of Translation and mRNA Abundance for Hundreds of Targets of a Human microRNA , 2009, PLoS biology.

[80]  Qixing Huang,et al.  Structural insights into mechanisms of the small RNA methyltransferase HEN1 , 2009, Nature.

[81]  T. Tuschl,et al.  Nucleation, propagation and cleavage of target RNAs in Ago silencing complexes , 2009, Nature.

[82]  M. Hentze,et al.  Drosophila miR2 primarily targets the m7GpppN cap structure for translational repression. , 2009, Molecular cell.

[83]  J. Yates,et al.  Mammalian miRNA RISC recruits CAF1 and PABP to affect PABP-dependent deadenylation. , 2009, Molecular cell.

[84]  H. Grosshans,et al.  Active turnover modulates mature microRNA activity in Caenorhabditis elegans , 2009, Nature.

[85]  R. Gregory,et al.  Lin28 recruits the TUTase Zcchc11 to inhibit let-7 maturation in embryonic stem cells , 2009, Nature Structural &Molecular Biology.

[86]  C. Joo,et al.  TUT4 in Concert with Lin28 Suppresses MicroRNA Biogenesis through Pre-MicroRNA Uridylation , 2009, Cell.

[87]  J. Neilson,et al.  Zcchc11-dependent uridylation of microRNA directs cytokine expression , 2009, Nature Cell Biology.

[88]  D. Cacchiarelli,et al.  Coupled RNA Processing and Transcription of Intergenic Primary MicroRNAs , 2009, Molecular and Cellular Biology.

[89]  F. Noubissi,et al.  CRD-BP protects the coding region of betaTrCP1 mRNA from miR-183-mediated degradation. , 2009, Molecular cell.

[90]  O. Voinnet,et al.  Biochemical Evidence for Translational Repression by Arabidopsis MicroRNAs[W] , 2009, The Plant Cell Online.

[91]  Hervé Seitz,et al.  Redefining MicroRNA Targets , 2009, Current Biology.

[92]  D. Corcoran,et al.  Features of Mammalian microRNA Promoters Emerge from Polymerase II Chromatin Immunoprecipitation Data , 2009, PloS one.

[93]  Justin J. Cassidy,et al.  A MicroRNA Imparts Robustness against Environmental Fluctuation during Development , 2009, Cell.

[94]  Y. Tomari,et al.  Drosophila argonaute1 and argonaute2 employ distinct mechanisms for translational repression. , 2009, Molecular cell.

[95]  Nicholas T. Ingolia,et al.  Genome-Wide Analysis in Vivo of Translation with Nucleotide Resolution Using Ribosome Profiling , 2009, Science.

[96]  N. Kataoka,et al.  Functional Association of the Microprocessor Complex with the Spliceosome , 2009, Molecular and Cellular Biology.

[97]  Herbert H. Tsang,et al.  Meta-analysis of small RNA-sequencing errors reveals ubiquitous post-transcriptional RNA modifications , 2009, Nucleic acids research.

[98]  Anton J. Enright,et al.  Zebrafish miR-1 and miR-133 shape muscle gene expression and regulate sarcomeric actin organization. , 2009, Genes & development.

[99]  E. Sontheimer,et al.  Origins and Mechanisms of miRNAs and siRNAs , 2009, Cell.

[100]  P. Waterhouse,et al.  miR-451 regulates zebrafish erythroid maturation in vivo via its target gata2. , 2009, Blood.

[101]  H. Iba,et al.  Vectors expressing efficient RNA decoys achieve the long-term suppression of specific microRNA activity in mammalian cells , 2009, Nucleic acids research.

[102]  T. Katoh,et al.  Selective stabilization of mammalian microRNAs by 3' adenylation mediated by the cytoplasmic poly(A) polymerase GLD-2. , 2009, Genes & development.

[103]  V. Chiang,et al.  Adenylation of plant miRNAs , 2009, Nucleic acids research.

[104]  Lan Jin,et al.  Biological basis for restriction of microRNA targets to the 3' untranslated region in mammalian mRNAs. , 2009, Nature structural & molecular biology.

[105]  V. Kim,et al.  Biogenesis of small RNAs in animals , 2009, Nature Reviews Molecular Cell Biology.

[106]  D. Barford,et al.  Enhancement of the Seed-Target Recognition Step in RNA Silencing by a PIWI/MID Domain Protein , 2009, Molecular cell.

[107]  D. Bartel MicroRNAs: Target Recognition and Regulatory Functions , 2009, Cell.

[108]  C. Burge,et al.  Most mammalian mRNAs are conserved targets of microRNAs. , 2008, Genome research.

[109]  Luigi Naldini,et al.  Stable knockdown of microRNA in vivo by lentiviral vectors , 2009, Nature Methods.

[110]  Jeffrey W. Habig,et al.  In C. elegans, High Levels of dsRNA Allow RNAi in the Absence of RDE-4 , 2008, PloS one.

[111]  T. Tuschl,et al.  Structure of an argonaute silencing complex with a seed-containing guide DNA and target RNA duplex , 2008, Nature.

[112]  G. Obernosterer,et al.  Target site effects in the RNA interference and microRNA pathways. , 2008, Biochemical Society transactions.

[113]  Jun S. Song,et al.  Chromatin structure analyses identify miRNA promoters , 2008 .

[114]  T. Tuschl,et al.  Structure of the guide-strand-containing argonaute silencing complex , 2008, Nature.

[115]  David P. Bartel,et al.  Early origins and evolution of microRNAs and Piwi-interacting RNAs in animals , 2008, Nature.

[116]  C. Joo,et al.  Lin28 mediates the terminal uridylation of let-7 precursor MicroRNA. , 2008, Molecular cell.

[117]  Robert Blelloch,et al.  Mouse ES cells express endogenous shRNAs, siRNAs, and other Microprocessor-independent, Dicer-dependent small RNAs. , 2008, Genes & development.

[118]  Joshua J. Forman,et al.  A search for conserved sequences in coding regions reveals that the let-7 microRNA targets Dicer within its coding sequence , 2008, Proceedings of the National Academy of Sciences.

[119]  N. Rajewsky,et al.  Widespread changes in protein synthesis induced by microRNAs , 2008, Nature.

[120]  D. Bartel,et al.  The impact of microRNAs on protein output , 2008, Nature.

[121]  D. Corey,et al.  Antisense transcripts are targets for activating small RNAs , 2008, Nature Structural &Molecular Biology.

[122]  S. Luo,et al.  Global identification of microRNA–target RNA pairs by parallel analysis of RNA ends , 2008, Nature Biotechnology.

[123]  Robert J. Moore,et al.  A microRNA catalog of the developing chicken embryo identified by a deep sequencing approach. , 2008, Genome research.

[124]  L. Sieburth,et al.  Widespread Translational Inhibition by Plant miRNAs and siRNAs , 2008, Science.

[125]  U. A. Ørom,et al.  MicroRNA-10a binds the 5'UTR of ribosomal protein mRNAs and enhances their translation. , 2008, Molecular cell.

[126]  D. Bartel,et al.  Endogenous siRNA and miRNA Targets Identified by Sequencing of the Arabidopsis Degradome , 2008, Current Biology.

[127]  Stefan L Ameres,et al.  The impact of target site accessibility on the design of effective siRNAs , 2008, Nature Biotechnology.

[128]  Ryan D. Morin,et al.  Application of massively parallel sequencing to microRNA profiling and discovery in human embryonic stem cells. , 2008, Genome research.

[129]  R. Place,et al.  MicroRNA-373 induces expression of genes with complementary promoter sequences , 2008, Proceedings of the National Academy of Sciences.

[130]  Hervé Seitz,et al.  Argonaute Loading Improves the 5′ Precision of Both MicroRNAs and Their miRNA∗ Strands in Flies , 2008, Current Biology.

[131]  Reuven Agami,et al.  RNA-Binding Protein Dnd1 Inhibits MicroRNA Access to Target mRNA , 2007, Cell.

[132]  J. Steitz,et al.  Switching from Repression to Activation: MicroRNAs Can Up-Regulate Translation , 2007, Science.

[133]  Jialing Huang,et al.  Derepression of MicroRNA-mediated Protein Translation Inhibition by Apolipoprotein B mRNA-editing Enzyme Catalytic Polypeptide-like 3G (APOBEC3G) and Its Family Members* , 2007, Journal of Biological Chemistry.

[134]  Manolis Kellis,et al.  Evolution, biogenesis, expression, and target predictions of a substantially expanded set of Drosophila microRNAs. , 2007, Genome research.

[135]  J. Kitzman,et al.  Determinants of targeting by endogenous and exogenous microRNAs and siRNAs. , 2007, RNA.

[136]  H. Horvitz,et al.  Most Caenorhabditis elegans microRNAs Are Individually Not Essential for Development or Viability , 2007, PLoS genetics.

[137]  Phillip A. Sharp,et al.  miRNA Profiling of Naïve, Effector and Memory CD8 T Cells , 2007, PloS one.

[138]  Michael Kertesz,et al.  The role of site accessibility in microRNA target recognition , 2007, Nature Genetics.

[139]  Takayuki Murata,et al.  MicroRNA Inhibition of Translation Initiation in Vitro by Targeting the Cap-Binding Complex eIF4F , 2007, Science.

[140]  Margaret S. Ebert,et al.  MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells , 2007, Nature Methods.

[141]  M. Todesco,et al.  Target mimicry provides a new mechanism for regulation of microRNA activity , 2007, Nature Genetics.

[142]  Peng Wang,et al.  The Drosophila RNA Methyltransferase, DmHen1, Modifies Germline piRNAs and Single-Stranded siRNAs in RISC , 2007, Current Biology.

[143]  Stefan L Ameres,et al.  Molecular Basis for Target RNA Recognition and Cleavage by Human RISC , 2007, Cell.

[144]  L. Lim,et al.  MicroRNA targeting specificity in mammals: determinants beyond seed pairing. , 2007, Molecular cell.

[145]  C. Sander,et al.  A Mammalian microRNA Expression Atlas Based on Small RNA Library Sequencing , 2007, Cell.

[146]  D. Baulcombe,et al.  miRNAs control gene expression in the single-cell alga Chlamydomonas reinhardtii , 2007, Nature.

[147]  Matthias W. Hentze,et al.  Drosophila miR2 induces pseudo-polysomes and inhibits translation initiation , 2007, Nature.

[148]  C. Croce,et al.  MicroRNA-133 controls cardiac hypertrophy , 2007, Nature Medicine.

[149]  Xiaoxia Qi,et al.  Control of Stress-Dependent Cardiac Growth and Gene Expression by a MicroRNA , 2007, Science.

[150]  Dang D. Long,et al.  Potent effect of target structure on microRNA function , 2007, Nature Structural &Molecular Biology.

[151]  J. Steitz,et al.  AU-Rich-Element-Mediated Upregulation of Translation by FXR1 and Argonaute 2 , 2007, Cell.

[152]  C. Norbury,et al.  Efficient RNA Polyuridylation by Noncanonical Poly(A) Polymerases , 2007, Molecular and Cellular Biology.

[153]  A. Hatzigeorgiou,et al.  Redirection of Silencing Targets by Adenosine-to-Inosine Editing of miRNAs , 2007, Science.

[154]  V. Kim,et al.  Processing of intronic microRNAs , 2007, The EMBO journal.

[155]  E. Wentzel,et al.  A Hexanucleotide Element Directs MicroRNA Nuclear Import , 2007, Science.

[156]  Jennifer Hesson,et al.  Untemplated Oligoadenylation Promotes Degradation of RISC-Cleaved Transcripts , 2006, Science.

[157]  D. Bartel,et al.  A diverse and evolutionarily fluid set of microRNAs in Arabidopsis thaliana. , 2006, Genes & development.

[158]  Christopher M. Player,et al.  Large-Scale Sequencing Reveals 21U-RNAs and Additional MicroRNAs and Endogenous siRNAs in C. elegans , 2006, Cell.

[159]  Alain Bucheton,et al.  A Novel Repeat-Associated Small Interfering RNA-Mediated Silencing Pathway Downregulates Complementary Sense gypsy Transcripts in Somatic Cells of the Drosophila Ovary , 2006, Journal of Virology.

[160]  R. Place,et al.  Small dsRNAs induce transcriptional activation in human cells , 2006, Proceedings of the National Academy of Sciences.

[161]  P. Bork,et al.  mRNA degradation by miRNAs and GW182 requires both CCR4:NOT deadenylase and DCP1:DCP2 decapping complexes. , 2006, Genes & development.

[162]  W. Filipowicz,et al.  Relief of microRNA-Mediated Translational Repression in Human Cells Subjected to Stress , 2006, Cell.

[163]  Byoung-Tak Zhang,et al.  Molecular Basis for the Recognition of Primary microRNAs by the Drosha-DGCR8 Complex , 2006, Cell.

[164]  D. Bartel,et al.  MicroRNAS and their regulatory roles in plants. , 2006, Annual review of plant biology.

[165]  S. Cohen,et al.  Genome-Wide Analysis of mRNAs Regulated by Drosha and Argonaute Proteins in Drosophila melanogaster , 2006, Molecular and Cellular Biology.

[166]  Anton J. Enright,et al.  Zebrafish MiR-430 Promotes Deadenylation and Clearance of Maternal mRNAs , 2006, Science.

[167]  Ligang Wu,et al.  MicroRNAs direct rapid deadenylation of mRNA. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[168]  V. Kim,et al.  The role of PACT in the RNA silencing pathway , 2006, The EMBO journal.

[169]  Xuemei Chen,et al.  HEN1 recognizes 21–24 nt small RNA duplexes and deposits a methyl group onto the 2′ OH of the 3′ terminal nucleotide , 2006, Nucleic acids research.

[170]  Stijn van Dongen,et al.  miRBase: microRNA sequences, targets and gene nomenclature , 2005, Nucleic Acids Res..

[171]  Anton J. Enright,et al.  RNA editing of human microRNAs , 2006, Genome Biology.

[172]  R. Russell,et al.  Animal MicroRNAs Confer Robustness to Gene Expression and Have a Significant Impact on 3′UTR Evolution , 2005, Cell.

[173]  G. Rubin,et al.  Drosophila microRNAs exhibit diverse spatial expression patterns during embryonic development. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[174]  N. Rajewsky,et al.  Silencing of microRNAs in vivo with ‘antagomirs’ , 2005, Nature.

[175]  Isabelle Behm-Ansmant,et al.  A crucial role for GW182 and the DCP1:DCP2 decapping complex in miRNA-mediated gene silencing. , 2005, RNA.

[176]  Anne Gatignol,et al.  TRBP, a regulator of cellular PKR and HIV‐1 virus expression, interacts with Dicer and functions in RNA silencing , 2005, EMBO reports.

[177]  P. Sarnow,et al.  Modulation of Hepatitis C Virus RNA Abundance by a Liver-Specific MicroRNA , 2005, Science.

[178]  A. Pasquinelli,et al.  Regulation by let-7 and lin-4 miRNAs Results in Target mRNA Degradation , 2005, Cell.

[179]  Xuemei Chen,et al.  Methylation Protects miRNAs and siRNAs from a 3′-End Uridylation Activity in Arabidopsis , 2005, Current Biology.

[180]  R. Shiekhattar,et al.  TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing , 2005, Nature.

[181]  Qinghua Liu,et al.  Dicer-1 and R3D1-L catalyze microRNA maturation in Drosophila. , 2005, Genes & development.

[182]  A. Denli,et al.  Normal microRNA Maturation and Germ-Line Stem Cell Maintenance Requires Loquacious, a Double-Stranded RNA-Binding Domain Protein , 2005, PLoS biology.

[183]  Kuniaki Saito,et al.  Processing of Pre-microRNAs by the Dicer-1–Loquacious Complex in Drosophila Cells , 2005, PLoS biology.

[184]  Florian Caiment,et al.  RNAi-Mediated Allelic trans-Interaction at the Imprinted Rtl1/Peg11 Locus , 2005, Current Biology.

[185]  D. Barford,et al.  Structural insights into mRNA recognition from a PIWI domain–siRNA guide complex , 2005, Nature.

[186]  Shuang Huang,et al.  Involvement of MicroRNA in AU-Rich Element-Mediated mRNA Instability , 2005, Cell.

[187]  D. Bartel,et al.  Microarray profiling of microRNAs reveals frequent coexpression with neighboring miRNAs and host genes. , 2005, RNA.

[188]  J. Castle,et al.  Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs , 2005, Nature.

[189]  Xuemei Chen,et al.  Methylation as a Crucial Step in Plant microRNA Biogenesis , 2005, Science.

[190]  C. Burge,et al.  Conserved Seed Pairing, Often Flanked by Adenosines, Indicates that Thousands of Human Genes are MicroRNA Targets , 2005, Cell.

[191]  Hans Lassmann,et al.  The Widespread Impact of Mammalian MicroRNAs on mRNA Repression and Evolution , 2005 .

[192]  V. Kim,et al.  The Drosha-DGCR8 complex in primary microRNA processing. , 2004, Genes & development.

[193]  T. Tuschl,et al.  The Human DiGeorge Syndrome Critical Region Gene 8 and Its D. melanogaster Homolog Are Required for miRNA Biogenesis , 2004, Current Biology.

[194]  B. Cullen,et al.  Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. , 2004, RNA.

[195]  R. Shiekhattar,et al.  The Microprocessor complex mediates the genesis of microRNAs , 2004, Nature.

[196]  G. Hannon,et al.  Processing of primary microRNAs by the Microprocessor complex , 2004, Nature.

[197]  H. Goodman,et al.  Uridine Addition After MicroRNA-Directed Cleavage , 2004, Science.

[198]  Sanghyuk Lee,et al.  MicroRNA genes are transcribed by RNA polymerase II , 2004, The EMBO journal.

[199]  A. Bradley,et al.  Identification of mammalian microRNA host genes and transcription units. , 2004, Genome research.

[200]  G. Hannon,et al.  Crystal Structure of Argonaute and Its Implications for RISC Slicer Activity , 2004, Science.

[201]  Guiliang Tang,et al.  MicroRNA control of PHABULOSA in leaf development: importance of pairing to the microRNA 5′ region , 2004 .

[202]  P. Green,et al.  AtXRN4 degrades mRNA in Arabidopsis and its substrates include selected miRNA targets. , 2004, Molecular cell.

[203]  Eric Westhof,et al.  Single Processing Center Models for Human Dicer and Bacterial RNase III , 2004, Cell.

[204]  B. Simon,et al.  Letter to the Editor: NMR Assignment of the Drosophila Argonaute2 PAZ Domain , 2004, Journal of biomolecular NMR.

[205]  D. Bartel,et al.  Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. , 2004, Molecular cell.

[206]  C. Sander,et al.  miR-122, a Mammalian Liver-Specific microRNA, is Processed from hcr mRNA and MayDownregulate the High Affinity Cationic Amino Acid Transporter CAT-1 , 2004, RNA biology.

[207]  Michael Sattler,et al.  Nucleic acid 3′-end recognition by the Argonaute2 PAZ domain , 2004, Nature Structural &Molecular Biology.

[208]  P. Zamore,et al.  Kinetic analysis of the RNAi enzyme complex , 2004, Nature Structural &Molecular Biology.

[209]  D. Bartel,et al.  MicroRNA-Directed Cleavage of HOXB8 mRNA , 2004, Science.

[210]  Olivier Voinnet,et al.  RETRACTED: Probing the MicroRNA and Small Interfering RNA Pathways with Virus-Encoded Suppressors of RNA Silencing[W] , 2004, Plant Cell.

[211]  E. Sontheimer,et al.  Distinct Roles for Drosophila Dicer-1 and Dicer-2 in the siRNA/miRNA Silencing Pathways , 2004, Cell.

[212]  Thomas Tuschl,et al.  Sequence-specific inhibition of microRNA- and siRNA-induced RNA silencing. , 2004, RNA.

[213]  Phillip D Zamore,et al.  Sequence-Specific Inhibition of Small RNA Function , 2004, PLoS biology.

[214]  D. Bartel MicroRNAs Genomics, Biogenesis, Mechanism, and Function , 2004, Cell.

[215]  U. Kutay,et al.  Nuclear Export of MicroRNA Precursors , 2004, Science.

[216]  D. Görlich,et al.  mediates nuclear export of pre-miRNAs Exportin 5 is a RanGTP-dependent dsRNA-binding protein that , 2004 .

[217]  B. Cullen,et al.  Structural requirements for pre-microRNA binding and nuclear export by Exportin 5. , 2004, Nucleic acids research.

[218]  B. Cullen,et al.  Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. , 2003, Genes & development.

[219]  B. Simon,et al.  Structure and nucleic-acid binding of the Drosophila Argonaute 2 PAZ domain , 2003, Nature.

[220]  Ming-Ming Zhou,et al.  Structure and conserved RNA binding of the PAZ domain , 2003, Nature.

[221]  Ronald H. A. Plasterk,et al.  Transposon silencing in the Caenorhabditis elegans germ line by natural RNAi , 2003, Nature.

[222]  V. Kim,et al.  The nuclear RNase III Drosha initiates microRNA processing , 2003, Nature.

[223]  J. Lieberman,et al.  Sustained Small Interfering RNA-Mediated HumanImmunodeficiency Virus Type 1 Inhibition in PrimaryMacrophages , 2003, Journal of Virology.

[224]  C. Burge,et al.  The microRNAs of Caenorhabditis elegans. , 2003, Genes & development.

[225]  B. Cullen,et al.  Sequence requirements for micro RNA processing and function in human cells. , 2003, RNA.

[226]  B. Reinhart,et al.  A biochemical framework for RNA silencing in plants. , 2003, Genes & development.

[227]  Marc Dreyfus,et al.  The Poly(A) Tail of mRNAs Bodyguard in Eukaryotes, Scavenger in Bacteria , 2002, Cell.

[228]  B. Samuelsson,et al.  Ribonuclease activity and RNA binding of recombinant human Dicer , 2002, The EMBO journal.

[229]  W. Filipowicz,et al.  Human Dicer preferentially cleaves dsRNAs at their termini without a requirement for ATP , 2002, The EMBO journal.

[230]  B. Bass,et al.  The role of RNA editing by ADARs in RNAi. , 2002, Molecular cell.

[231]  C. Llave,et al.  Cleavage of Scarecrow-like mRNA Targets Directed by a Class of Arabidopsis miRNA , 2002, Science.

[232]  J. Messing,et al.  CARPEL FACTORY, a Dicer Homolog, and HEN1, a Novel Protein, Act in microRNA Metabolism in Arabidopsis thaliana , 2002, Current Biology.

[233]  V. Kim,et al.  MicroRNA maturation: stepwise processing and subcellular localization , 2002, The EMBO journal.

[234]  W. Filipowicz,et al.  Specific interference with gene expression induced by long, double-stranded RNA in mouse embryonal teratocarcinoma cell lines , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[235]  G. Hannon,et al.  C . elegans involved in developmental timing in Dicer functions in RNA interference and in synthesis of small RNA , 2001 .

[236]  A. Pasquinelli,et al.  Genes and Mechanisms Related to RNA Interference Regulate Expression of the Small Temporal RNAs that Control C. elegans Developmental Timing , 2001, Cell.

[237]  A. Pasquinelli,et al.  A Cellular Function for the RNA-Interference Enzyme Dicer in the Maturation of the let-7 Small Temporal RNA , 2001, Science.

[238]  A. Caudy,et al.  Role for a bidentate ribonuclease in the initiation step of RNA interference , 2001 .

[239]  L. Miraglia,et al.  Human RNase III Is a 160-kDa Protein Involved in Preribosomal RNA Processing* , 2000, The Journal of Biological Chemistry.

[240]  C. Mello,et al.  Genetic requirements for inheritance of RNAi in C. elegans. , 2000, Science.

[241]  Ronald H. A. Plasterk,et al.  A genetic link between co-suppression and RNA interference in C. elegans , 2000, Nature.

[242]  R. Plasterk,et al.  mut-7 of C. elegans, Required for Transposon Silencing and RNA Interference, Is a Homolog of Werner Syndrome Helicase and RNaseD , 1999, Cell.

[243]  G. Ruvkun,et al.  Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans , 1993, Cell.

[244]  V. Ambros,et al.  The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14 , 1993, Cell.