Competing Theories of Cataractogenesis After Pars Plana Vitrectomy and the Nutrient Theory of Cataractogenesis: A Function of Altered Aqueous Fluid Dynamics

Glaucoma and vitreoretinal surgeries have long been associated with cataract progression. There have been many theories to explain this phenomenon. These theories include direct or indirect mechanical damage from instrumentation, light toxicity from the operating scope, intraocular irrigating solution, use of intraocular gas, intraocular inflammation, and advanced patient age. These theories, however, do not distinguish between the different types of cataracts that form postoperatively, nor do they provide a unified coherent explanation for the observed cataract progression. In this chapter, we propose a mechanism of cataractogenesis, specifically nuclear sclerosis formation, which we believe occurs as a function of altered aqueous fluid dynamics after intraocular surgery. We present this as the nutrient theory of cataractogenesis. Before detailed discussion of the nutrient theory of cataractogenesis as a function of altered aqueous fluid dynamics, a background review of the following concepts will serve as a vital conceptual framework for its understanding: 1) anatomy andmetabolism of the lens, 2) aqueous humor and vitreous biochemistry, 3) fluidics of the aqueous humor and vitreous, 4) types of cataracts, 5) recognized causes of cataracts, and 6) current theories of nuclear sclerosis formation after pars plana vitrectomy.

[1]  E. D. Ramírez Cataract Surgery: Technique, Complications and Management , 2006 .

[2]  John T. Thompson The role of patient age and intraocular gas use in cataract progression after vitrectomy for macular holes and epiretinal membranes. , 2004, American journal of ophthalmology.

[3]  N. Kaushik Anesthesia for cataract surgery. , 2003, Journal of cataract and refractive surgery.

[4]  R. Adelman,et al.  Cataract formation after initial trabeculectomy in young patients. , 2003, Ophthalmology.

[5]  S. Wu,et al.  Adler's Physiology of the Eye , 2002 .

[6]  J. Kuszak,et al.  Suppression of post-vitrectomy lens changes in the rabbit by novel benzopyranyl esters and amides. , 2002, Experimental eye research.

[7]  H. Flynn,et al.  Acute-onset postoperative endophthalmitis: review of incidence and visual outcomes (1995-2001). , 2002, Ophthalmic surgery and lasers.

[8]  W. Freeman,et al.  Duration of vitrectomy and postoperative cataract in the vitrectomy for macular hole study. , 2001, American journal of ophthalmology.

[9]  Y. Tano,et al.  Assessment of nuclear sclerosis after nonvitrectomizing vitreous surgery. , 2001, American journal of ophthalmology.

[10]  A. Bron,et al.  Posterior subcapsular and nuclear cataract after vitrectomy , 2001, Journal of cataract and refractive surgery.

[11]  S. Hsu,et al.  Cataract formation after pars plana vitrectomy. , 2001, The Kaohsiung journal of medical sciences.

[12]  B. Berkowitz,et al.  The effect of partial vitrectomy on blood-ocular barrier function in the rabbit , 2001, Current eye research.

[13]  S. West,et al.  Long term results of glaucoma surgery among participants in an east African population survey , 2000, The British journal of ophthalmology.

[14]  F. A. Shamsi,et al.  Immunochemical detection of oxalate monoalkylamide, an ascorbate‐derived Maillard reaction product in the human lens , 1999, FEBS letters.

[15]  R. Truscott,et al.  An impediment to glutathione diffusion in older normal human lenses: a possible precondition for nuclear cataract. , 1998, Experimental eye research.

[16]  Tetsuya Yamamoto,et al.  An Image Analysis Study of Cataract Development after Trabeculectomy with Mitomycin C , 1998, Ophthalmologica.

[17]  S. Paluska,et al.  Cataract after vitrectomy in young patients. , 1997, Ophthalmology.

[18]  E. Vesti,et al.  A review of the outcome of trabeculectomy in open-angle glaucoma. , 1997, Ophthalmic surgery and lasers.

[19]  B. Zlokovic,et al.  Identification of a novel, sodium-dependent, reduced glutathione transporter in the rat lens epithelium. , 1996, Investigative ophthalmology & visual science.

[20]  M. Thomas,et al.  Nuclear sclerotic cataract after vitrectomy in patients younger than 50 years of age. , 1995, Ophthalmology.

[21]  A. Spector,et al.  Oxidative stress‐induced cataract: mechanism of action , 1995, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[22]  B. S. Winkler,et al.  The redox couple between glutathione and ascorbic acid: a chemical and physiological perspective. , 1994, Free radical biology & medicine.

[23]  M. Feather,et al.  Ascorbic acid glycation: the reactions of L-threose in lens tissue. , 1994, Experimental eye research.

[24]  E. Vesti,et al.  Development of cataract after trabeculectomy , 1993, Acta ophthalmologica.

[25]  A. Holleschau,et al.  Activity loss of glutathione synthesis enzymes associated with human subcapsular cataract. , 1992, Investigative ophthalmology & visual science.

[26]  B. Ortwerth,et al.  The glycation-associated crosslinking of lens proteins by ascorbic acid is not mediated by oxygen free radicals. , 1991, Experimental eye research.

[27]  J. Sjöstrand,et al.  Long‐term outcome following trabeculectomy: I , 1991, Acta ophthalmologica.

[28]  J. J. Harding,et al.  Cataract: Biochemistry, Epidemiology and Pharmacology , 1991 .

[29]  J. L. Hess,et al.  Rapid deterioration of lens fibers in GSH-depleted mouse pups. , 1991, Investigative ophthalmology & visual science.

[30]  C. Enger,et al.  Nuclear sclerotic cataract after vitrectomy for idiopathic epiretinal membranes causing macular pucker. , 1991, American journal of ophthalmology.

[31]  Y. Ogura,et al.  Quantitative analysis of lens changes after vitrectomy by fluorophotometry. , 1991, American journal of ophthalmology.

[32]  R. Truscott,et al.  Calcium-induced opacification and proteolysis in the intact rat lens. , 1990, Investigative ophthalmology & visual science.

[33]  J. Trevithick,et al.  Modelling cortical cataractogenesis. XI. Vitamin C reduces gamma-crystallin leakage from lenses in diabetic rats. , 1990, Experimental eye research.

[34]  M P Clarke,et al.  The development of cataract following trabeculectomy , 1990, Eye.

[35]  V. Reddy,et al.  Glutathione and its function in the lens--an overview. , 1990, Experimental eye research.

[36]  Y Honda,et al.  Comparative study of vitreous oxygen tension in human and rabbit eyes. , 1989, Investigative ophthalmology & visual science.

[37]  L T Chylack,et al.  Lens opacities classification system II (LOCS II) , 1989, Archives of ophthalmology.

[38]  M. Stazi,et al.  An independent evaluation of the Lens Opacities Classification System II (LOCS II). The Italian-American Cataract Study Group. , 1989, Ophthalmology.

[39]  C. Toris,et al.  Hydrostatic pressure of the suprachoroidal space. , 1989, Investigative ophthalmology & visual science.

[40]  M. Marmor,et al.  Pigment adherence as a measure of retinal adhesion: dependence on temperature. , 1988, Investigative ophthalmology & visual science.

[41]  S. D. Bustros,et al.  Nuclear sclerosis after vitrectomy for idiopathic epiretinal membranes. , 1988, American journal of ophthalmology.

[42]  J. Sebag,et al.  Effects of visible-light irradiation on vitreous structure in the presence of a photosensitizer. , 1987, Experimental eye research.

[43]  L. Takemoto,et al.  Quantitation of membrane-associated crystallins from aging and cataractous human lenses. , 1987, Investigative ophthalmology & visual science.

[44]  J. Lean,et al.  Relative permeability of retina and retinal pigment epithelium to the diffusion of tritiated water from vitreous to choroid. , 1986, Archives of ophthalmology.

[45]  W. Lohmann,et al.  Nuclear cataract: oxidative damage to the lens. , 1986, Experimental eye research.

[46]  M. Riley,et al.  ATPases of ciliary epithelium: cellular and subcellular distribution and probable role in secretion of aqueous humor. , 1986, Experimental eye research.

[47]  M. Novak,et al.  The crystalline lens after vitrectomy for diabetic retinopathy. , 1984, Ophthalmology.

[48]  J. M. Butler,et al.  Unidirectional vesicular transport mechanism in retinal vessels. , 1983, Investigative ophthalmology & visual science.

[49]  T. Meredith,et al.  Principles and Practice of Ophthalmology , 1982 .

[50]  N. Rafferty,et al.  Cell population kinetics of the mouse lens epithelium , 1981, Journal of cellular physiology.

[51]  D. Goodenough,et al.  Lens metabolic cooperation: a study of mouse lens transport and permeability visualized with freeze-substitution autoradiography and electron microscopy , 1980, The Journal of cell biology.

[52]  G. Blankenship Endophthalmitis after pars plana vitrectomy. , 1977, American journal of ophthalmology.

[53]  V. Godel,et al.  Cataractogenic factors in patients with primary angle-closure glaucoma after peripheral iridectomy. , 1977, American journal of ophthalmology.

[54]  Richard F. Brubaker,et al.  Adler's Physiology of the Eye , 1976 .

[55]  J. Weiter,et al.  Paramagnetic species in cataractous human lenses , 1975, Nature.

[56]  C. Clemente HISTOLOGY OF THE HUMAN EYE : An Atlas and Textbook , 1973 .

[57]  R Pages,et al.  Ocular Pathology , 1972, Maroc medical.

[58]  F. Fraunfelder,et al.  Acute reversible lens opacity: caused by drugs, cold, anoxia, asphyxia, stress, death and dehydration. , 1970, Experimental eye research.

[59]  S. Hayreh Posterior drainage of the intraocular fluid from the vitreous , 1966 .

[60]  L. P. Gregory Polonium-210 in Leaf Tobacco from Four Countries , 1965, Science.

[61]  D. Maurice The exchange of sodium between the vitreous body and the blood and aqueous humour , 1957, The Journal of physiology.

[62]  J. Pederson Chapter 113 – Fluid Physiology of the Subretinal Space , 2006 .

[63]  M. Trese,et al.  Clinical course and surgical treatment of macular epiretinal membranes in young subjects. , 2001, Ophthalmology.

[64]  Y. Kitazawa,et al.  Cataract development after trabeculectomy with mitomycin C: a 1-year study. , 2000, Japanese journal of ophthalmology.

[65]  F. Giblin,et al.  Protection from oxidative insult in glutathione depleted lens epithelial cells. , 1999, Experimental eye research.

[66]  H. Tabandeh,et al.  Retinal detachment associated with macular hole surgery: characteristics, mechanism, and outcomes. , 1999, Retina.

[67]  W. Freeman,et al.  Vitrectomy for the treatment of full-thickness stage 3 or 4 macular holes. Results of a multicentered randomized clinical trial. The Vitrectomy for Treatment of Macular Hole Study Group. , 1997, Archives of ophthalmology.

[68]  N. Brown,et al.  Lens disorders : a clinical manual of cataract diagnosis , 1995 .

[69]  H. Flynn,et al.  Endophthalmitis after pars plana vitrectomy. The Postvitrectomy Endophthalmitis Study Group. , 1995, Ophthalmology.

[70]  Ling-Fu Meng Anesthesia for Ophthalmic and Otolaryngologic Surgery , 1994 .

[71]  J. Burguera Anesthesia for Ophthalmic and Otolaryngologic Surgery , 1994 .

[72]  A. Bode,et al.  Ocular ascorbate transport and metabolism. , 1991, Comparative biochemistry and physiology. A, Comparative physiology.

[73]  M. S. Sunba,et al.  Incidence of posttrabeculectomy cataract among Arabs in Kuwait. , 1991, Ophthalmic research.

[74]  L. Takemoto,et al.  Specificity of alpha crystallin binding to the lens membrane. , 1990, Current eye research.

[75]  G. Marchini,et al.  Prospective study of the lens changes after trabeculectomy. , 1989, Developments in ophthalmology.

[76]  J. Weiter Phototoxic Changes in the Retina , 1987 .

[77]  A. Bellows,et al.  Long-term evaluation of initial filtration surgery. , 1986, Ophthalmology.

[78]  N. Jaffe The vitreous. , 1972, Archives of ophthalmology.

[79]  A. Bill Conventional and uveo-scleral drainage of aqueous humour in the cynomolgus monkey (Macaca irus) at normal and high intraocular pressures. , 1966, Experimental eye research.

[80]  R. Scammon,et al.  GROWTH IN MASS AND VOLUME OF THE HUMAN LENS IN POSTNATAL LIFE , 1937 .