Journal of the American Statistical Association Spatio-spectral Mixed-effects Model for Functional Magnetic Resonance Imaging Data Spatio-spectral Mixed-effects Model for Functional Magnetic Resonance Imaging Data

The goal of this article is to model cognitive control related activation among predefined regions of interest (ROIs) of the human brain while properly adjusting for the underlying spatio-temporal correlations. Standard approaches to fMRI analysis do not simultaneously take into account both the spatial and temporal correlations that are prevalent in fMRI data. This is primarily due to the computational complexity of estimating the spatio-temporal covariance matrix. More specifically, they do not take into account multiscale spatial correlation (between-ROIs and within-ROI). To address these limitations, we propose a spatio-spectral mixed-effects model. Working in the spectral domain simplifies the temporal covariance structure because the Fourier coefficients are approximately uncorrelated across frequencies. Additionally, by incorporating voxel-specific and ROI-specific random effects, the model is able to capture the multiscale spatial covariance structure: distance-dependent local correlation (within an ROI), and distance-independent global correlation (between-ROIs). Building on existing theory on linear mixed-effects models to conduct estimation and inference, we applied our model to fMRI data to study activation in prespecified ROIs in the prefontal cortex and estimate the correlation structure in the network. Simulation studies demonstrate that ignoring the multiscale correlation leads to higher false positive error rates.

[1]  Y. Benjamini,et al.  Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .

[2]  Mike Rees,et al.  5. Statistics for Spatial Data , 1993 .

[3]  F Dubois Bowman,et al.  Spatio-temporal modeling of localized brain activity. , 2005, Biostatistics.

[4]  Alan C. Evans,et al.  A Three-Dimensional Statistical Analysis for CBF Activation Studies in Human Brain , 1992, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[5]  E. Bullmore,et al.  Statistical methods of estimation and inference for functional MR image analysis , 1996, Magnetic resonance in medicine.

[6]  Christopher R. Genovese A Bayesian Time-Course Model for Functional Magnetic Resonance Imaging Data: Rejoinder , 2000 .

[7]  R. Dubin Estimation of Regression Coefficients in the Presence of Spatially Autocorrelated Error Terms , 1988 .

[8]  Robert Haining,et al.  Statistics for spatial data: by Noel Cressie, 1991, John Wiley & Sons, New York, 900 p., ISBN 0-471-84336-9, US $89.95 , 1993 .

[9]  James D. Hamilton Time Series Analysis , 1994 .

[10]  Richard A. Davis,et al.  Time Series: Theory and Methods , 2013 .

[11]  David Badre,et al.  Cognitive control, hierarchy, and the rostro–caudal organization of the frontal lobes , 2008, Trends in Cognitive Sciences.

[12]  Yul-Wan Sung,et al.  Functional magnetic resonance imaging , 2004, Scholarpedia.

[13]  Clayton E. Curtis,et al.  Coherence between fMRI time-series distinguishes two spatial working memory networks , 2005, NeuroImage.

[14]  Hernando Ombao,et al.  SPATIO-SPECTRAL ANALYSIS OF BRAIN SIGNALS , 2008 .

[15]  E. Koechlin,et al.  The Architecture of Cognitive Control in the Human Prefrontal Cortex , 2003, Science.

[16]  Richard A. Davis,et al.  Time Series: Theory and Methods (2nd ed.). , 1992 .

[17]  P. J. Jennings,et al.  Time series analysis in the time domain and resampling methods for studies of functional magnetic resonance brain imaging , 1997, Human brain mapping.

[18]  Karl J. Friston,et al.  Analysis of fMRI Time-Series Revisited , 1995, NeuroImage.

[19]  Karl J. Friston,et al.  Analysis of fMRI Time-Series Revisited—Again , 1995, NeuroImage.

[20]  Yasumasa Matsuda,et al.  A Spatio-temporal Regression Model for the Analysis of Functional MRI Data , 2002, NeuroImage.

[21]  Brian Caffo,et al.  A Bayesian hierarchical framework for spatial modeling of fMRI data , 2008, NeuroImage.

[22]  J. Ibrahim,et al.  Regression Models for Identifying Noise Sources in Magnetic Resonance Images , 2009, Journal of the American Statistical Association.

[23]  T A Carpenter,et al.  Colored noise and computational inference in neurophysiological (fMRI) time series analysis: Resampling methods in time and wavelet domains , 2001, Human brain mapping.

[24]  David Badre,et al.  Functional Magnetic Resonance Imaging Evidence for a Hierarchical Organization of the Prefrontal Cortex , 2007, Journal of Cognitive Neuroscience.

[25]  Trevor S. Smart,et al.  The Statistical Analysis of Functional MRI Data , 2010 .

[26]  Karl J. Friston,et al.  A unified statistical approach for determining significant signals in images of cerebral activation , 1996, Human brain mapping.

[27]  M. D’Esposito,et al.  Is the rostro-caudal axis of the frontal lobe hierarchical? , 2009, Nature Reviews Neuroscience.

[28]  Gabriele Lohmann,et al.  On Multivariate Spectral Analysis of fMRI Time Series , 2001, NeuroImage.

[29]  F. Bowman,et al.  Spatiotemporal Models for Region of Interest Analyses of Functional Neuroimaging Data , 2007 .

[30]  J. Chilès,et al.  Geostatistics: Modeling Spatial Uncertainty , 1999 .

[31]  Jorge Mateu,et al.  On potentially negative space time covariances obtained as sum of products of marginal ones , 2008 .

[32]  Martin A. Lindquist,et al.  Adaptive spatial smoothing of fMRI images , 2010 .

[33]  Christopher R. Genovese,et al.  A Bayesian Time-Course Model for Functional Magnetic Resonance Imaging Data , 2000 .

[34]  Daniel B. Rowe Modeling both the magnitude and phase of complex-valued fMRI data , 2005, NeuroImage.

[35]  Sophie Achard The Statistical Analysis of Functional MRI Data , 2008 .

[36]  Jeffrey W. Cooney,et al.  Hierarchical cognitive control deficits following damage to the human frontal lobe , 2009, Nature Neuroscience.

[37]  Bradley P. Carlin,et al.  Hierarchical Multivarite CAR Models for Spatio-Temporally Correlated Survival Data , 2002 .

[38]  Alan C. Evans,et al.  A General Statistical Analysis for fMRI Data , 2000, NeuroImage.

[39]  Scott L. Zeger,et al.  Non‐linear Fourier Time Series Analysis for Human Brain Mapping by Functional Magnetic Resonance Imaging , 1997 .

[40]  G. Nason,et al.  Wavelet processes and adaptive estimation of the evolutionary wavelet spectrum , 2000 .

[41]  Lee M. Miller,et al.  Measuring interregional functional connectivity using coherence and partial coherence analyses of fMRI data , 2004, NeuroImage.