A penalty-free Nitsche method for the weak imposition of boundary conditions in compressible and incompressible elasticity
暂无分享,去创建一个
[1] L. R. Scott,et al. Finite element interpolation of nonsmooth functions satisfying boundary conditions , 1990 .
[2] Rolf Stenberg,et al. On weakly imposed boundary conditions for second order problems , 1995 .
[3] Erik Burman,et al. Explicit strategies for incompressible fluid‐structure interaction problems: Nitsche type mortaring versus Robin–Robin coupling , 2014 .
[4] L. R. Scott,et al. The Mathematical Theory of Finite Element Methods , 1994 .
[5] Frédéric Hecht,et al. New development in freefem++ , 2012, J. Num. Math..
[6] Benjamin Stamm,et al. Bubble stabilized discontinuous Galerkin method for parabolic and elliptic problems , 2010, Numerische Mathematik.
[7] J. Nitsche. Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind , 1971 .
[8] Mats G. Larson,et al. Analysis of a Nonsymmetric Discontinuous Galerkin Method for Elliptic Problems: Stability and Energy Error Estimates , 2004, SIAM J. Numer. Anal..
[9] Thomas J. R. Hughes,et al. A comparison of discontinuous and continuous Galerkin methods bases on error estimates, conservation, robustness and efficiency , 2000 .
[10] Erik Burman,et al. A Penalty-Free Nonsymmetric Nitsche-Type Method for the Weak Imposition of Boundary Conditions , 2011, SIAM J. Numer. Anal..
[11] VIVETTE GIRAULT,et al. DG Approximation of Coupled Navier-Stokes and Darcy Equations by Beaver-Joseph-Saffman Interface Condition , 2009, SIAM J. Numer. Anal..
[12] Vivette Girault,et al. Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.
[13] I. Babuska,et al. A DiscontinuoushpFinite Element Method for Diffusion Problems , 1998 .