A penalty-free Nitsche method for the weak imposition of boundary conditions in compressible and incompressible elasticity

In this paper, we study the stability of the nonsymmetric version of Nitsche's method without penalty for compressible and incompressible elasticity. For the compressible case we prove the convergence of the error in the $H^1$- and $L^2$-norms. In the incompressible case we use a Galerkin least squares pressure stabilization and we prove the convergence in the $H^1$-norm for the velocity and convergence of the pressure in the $L^2$-norm.

[1]  L. R. Scott,et al.  Finite element interpolation of nonsmooth functions satisfying boundary conditions , 1990 .

[2]  Rolf Stenberg,et al.  On weakly imposed boundary conditions for second order problems , 1995 .

[3]  Erik Burman,et al.  Explicit strategies for incompressible fluid‐structure interaction problems: Nitsche type mortaring versus Robin–Robin coupling , 2014 .

[4]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[5]  Frédéric Hecht,et al.  New development in freefem++ , 2012, J. Num. Math..

[6]  Benjamin Stamm,et al.  Bubble stabilized discontinuous Galerkin method for parabolic and elliptic problems , 2010, Numerische Mathematik.

[7]  J. Nitsche Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind , 1971 .

[8]  Mats G. Larson,et al.  Analysis of a Nonsymmetric Discontinuous Galerkin Method for Elliptic Problems: Stability and Energy Error Estimates , 2004, SIAM J. Numer. Anal..

[9]  Thomas J. R. Hughes,et al.  A comparison of discontinuous and continuous Galerkin methods bases on error estimates, conservation, robustness and efficiency , 2000 .

[10]  Erik Burman,et al.  A Penalty-Free Nonsymmetric Nitsche-Type Method for the Weak Imposition of Boundary Conditions , 2011, SIAM J. Numer. Anal..

[11]  VIVETTE GIRAULT,et al.  DG Approximation of Coupled Navier-Stokes and Darcy Equations by Beaver-Joseph-Saffman Interface Condition , 2009, SIAM J. Numer. Anal..

[12]  Vivette Girault,et al.  Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.

[13]  I. Babuska,et al.  A DiscontinuoushpFinite Element Method for Diffusion Problems , 1998 .