Circular-harmonic minimum average correlation energy filter for color pattern recognition.

Minimum average correlation energy filtering is applied to rotation-invariant color pattern recognition. A method of derivation of the circular-harmonic component minimum average correlation energy filter for an arbitrary order is introduced. This filter has the advantage of being useful for several color channels simultaneously. Both computer simulations and optical experiments are presented, proving the discrimination abilities for this implementation.

[1]  J Campos,et al.  Different strategies in optical recognition of polychromatic images. , 1992, Applied optics.

[2]  Carlos Ferreira,et al.  Experimental results in color pattern recognition by multichannel matched filtering , 1992 .

[3]  H H Arsenault,et al.  Optical pattern recognition using circular harmonic expansion. , 1982, Applied optics.

[4]  Carlos Ferreira,et al.  Multichannel rotation-invariant pattern recognition for polychromatic objects using circular harmonic filters , 1992 .

[5]  H. Yau,et al.  Phase-only circular harmonic matched filtering. , 1989, Applied optics.

[6]  J Shamir,et al.  Sidelobe reduction in optical signal processing. , 1993, Applied optics.

[7]  Carlos Ferreira,et al.  Matched filter and phase only filter performance in colour image recognition , 1989 .

[8]  P. Réfrégier,et al.  Optical pattern recognition : optimal trade-off circular harmonic filters , 1991 .

[9]  D. Casasent,et al.  Minimum average correlation energy filters. , 1987, Applied optics.

[10]  H. Yau,et al.  Experimental demonstration of phase-only circular harmonic filtering using computer generated filters. , 1990, Applied optics.

[11]  David Casasent,et al.  Generalized in-plane rotation-invariant minimum average correlation energy filter , 1991 .

[12]  H H Arsenault,et al.  Rotation-invariant digital pattern recognition using circular harmonic expansion. , 1982, Applied optics.

[13]  B. Kumar,et al.  Performance measures for correlation filters. , 1990, Applied optics.

[14]  Yunlong Sheng,et al.  Method for determining expansion centers and predicting sidelobe levels for circular-harmonic filters , 1987 .

[15]  Henri H. Arsenault,et al.  Optimum Sidelobe-Reducing Invariant Matched Filters For Pattern Recognition , 1989, Other Conferences.

[16]  David Mendlovic,et al.  Shift and scale invariant pattern recognition using Mellin radial harmonics , 1988 .

[17]  T. Szoplik,et al.  Shift-and-scale-invariant pattern recognition using an elliptic coordinate-transformed phase-only filter. , 1992, Applied optics.

[18]  J Shamir,et al.  Circular harmonic phase filters for efficient rotationinvariant pattern recognition. , 1988, Applied optics.

[19]  M. Yzuel,et al.  Phase-only filters codified with Burckhardt's method. , 1990, Applied optics.

[20]  P Refregier Optimal trade-off filters for noise robustness, sharpness of the correlation peak, and Horner efficiency. , 1991, Optics letters.