On the dynamics of an SEIR epidemic model with a convex incidence rate

An SEIR epidemic model with a nonlinear incidence rate is studied. The incidence is assumed to be a convex function with respect to the infective class of a host population. A bifurcation analysis is performed and conditions ensuring that the system exhibits backward bifurcation are provided. The global dynamics is also studied, through a geometric approach to stability. Numerical simulations are presented to illustrate the results obtained analytically. This research is discussed in the framework of the recent literature on the subject.

[1]  James S. Muldowney,et al.  A Geometric Approach to Global-Stability Problems , 1996 .

[2]  Alberto d'Onofrio,et al.  Vaccination policies and nonlinear force of infection: generalization of an observation by Alexander and Moghadas (2004) , 2005, Appl. Math. Comput..

[3]  M. Fan,et al.  Global stability of an SEIS epidemic model with recruitment and a varying total population size. , 2001, Mathematical biosciences.

[4]  Carlos Castillo-Chavez,et al.  Backwards bifurcations and catastrophe in simple models of fatal diseases , 1998, Journal of mathematical biology.

[5]  Shigui Ruan,et al.  Global analysis of an epidemic model with nonmonotone incidence rate , 2006, Mathematical Biosciences.

[6]  Michael Y. Li,et al.  Global Stability in Some Seir Epidemic Models , 2002 .

[7]  P van den Driessche,et al.  Backward bifurcation in epidemic control. , 1997, Mathematical biosciences.

[8]  Deborah Lacitignola,et al.  On the global dynamics of some relevant bilinear models , 2008 .

[9]  Robert H. Martin Logarithmic norms and projections applied to linear differential systems , 1974 .

[10]  V. Capasso Mathematical Structures of Epidemic Systems , 1993, Lecture Notes in Biomathematics.

[11]  B. Buonomo,et al.  On the use of the geometric approach to global stability for three dimensional ODE systems: A bilinear case , 2008 .

[12]  Shiwu Xiao,et al.  An SIRS model with a nonlinear incidence rate , 2007 .

[13]  Andrei Korobeinikov,et al.  Lyapunov Functions and Global Stability for SIR and SIRS Epidemiological Models with Non-Linear Transmission , 2006, Bulletin of mathematical biology.

[14]  M. Li,et al.  Global dynamics of a SEIR model with varying total population size. , 1999, Mathematical Biosciences.

[15]  Zhen Jin,et al.  Global stability of an SEIR epidemic model with constant immigration , 2006 .

[16]  Negative criteria for the existence of periodic solutions in a class of delay-differential equations , 2002 .

[17]  K. Schmitt,et al.  Permanence and the dynamics of biological systems. , 1992, Mathematical biosciences.

[18]  Deborah Lacitignola,et al.  Global stability of an SIR epidemic model with information dependent vaccination. , 2008, Mathematical biosciences.

[19]  Carlos Castillo-Chavez,et al.  Stability and bifurcation for a multiple-group model for the dynamics of HIV/AIDS transmission , 1992 .

[20]  Julien Arino,et al.  Global Results for an Epidemic Model with Vaccination that Exhibits Backward Bifurcation , 2003, SIAM J. Appl. Math..

[21]  Andrei Korobeinikov,et al.  Global Properties of Infectious Disease Models with Nonlinear Incidence , 2007, Bulletin of mathematical biology.

[22]  Shigui Ruan,et al.  Uniform persistence and flows near a closed positively invariant set , 1994 .

[23]  Jan Medlock,et al.  Resistance mechanisms matter in SIR models. , 2007, Mathematical biosciences and engineering : MBE.

[24]  Vincenzo Capasso,et al.  Global Solution for a Diffusive Nonlinear Deterministic Epidemic Model , 1978 .

[25]  K. Hadeler,et al.  A core group model for disease transmission. , 1995, Mathematical biosciences.

[26]  J. Dushoff,et al.  Incorporating immunological ideas in epidemiological models. , 1996, Journal of theoretical biology.

[27]  Xianning Liu,et al.  Avian-human influenza epidemic model. , 2007, Mathematical biosciences.

[28]  B. Buonomo,et al.  General conditions for global stability in a single species population-toxicant model , 2004 .

[29]  James S. Muldowney,et al.  Compound matrices and ordinary differential equations , 1990 .

[30]  Nonexistence of periodic solutions in delayed Lotka---Volterra systems , 2002 .

[31]  Liancheng Wang,et al.  Global Dynamics of an SEIR Epidemic Model with Vertical Transmission , 2001, SIAM J. Appl. Math..

[32]  J. Yorke,et al.  A Deterministic Model for Gonorrhea in a Nonhomogeneous Population , 1976 .

[33]  Michael Y. Li,et al.  Global stability for the SEIR model in epidemiology. , 1995, Mathematical biosciences.

[34]  P. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[35]  Herbert W. Hethcote,et al.  The Mathematics of Infectious Diseases , 2000, SIAM Rev..

[36]  Denise Kirschner,et al.  Mathematical analysis of the global dynamics of a model for HTLV-I infection and ATL progression. , 2002, Mathematical biosciences.

[37]  Wendi Wang Backward bifurcation of an epidemic model with treatment. , 2006, Mathematical biosciences.

[38]  C M Kribs-Zaleta Core recruitment effects in SIS models with constant total populations. , 1999, Mathematical biosciences.

[39]  Zhen Jin,et al.  GLOBAL STABILITY OF A SEIR EPIDEMIC MODEL WITH INFECTIOUS FORCE IN LATENT, INFECTED AND IMMUNE PERIOD , 2005 .

[40]  S. Rush,et al.  The complete heart-lead relationship in the Einthoven triangle. , 1968, The Bulletin of mathematical biophysics.

[41]  Michael Y. Li,et al.  Mathematical analysis of the global dynamics of a model for HIV infection of CD4+ T cells. , 2006, Mathematical biosciences.

[42]  James Watmough,et al.  A simple SIS epidemic model with a backward bifurcation , 2000, Journal of mathematical biology.

[43]  James S. Muldowney,et al.  On R.A. Smith's Autonomous Convergence Theorem , 1995 .

[44]  Carlos Castillo-Chavez,et al.  Dynamical models of tuberculosis and their applications. , 2004, Mathematical biosciences and engineering : MBE.

[45]  G. Serio,et al.  A generalization of the Kermack-McKendrick deterministic epidemic model☆ , 1978 .

[46]  J. Velasco-Hernández,et al.  A simple vaccination model with multiple endemic states. , 2000, Mathematical biosciences.

[47]  J. Watmough,et al.  Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. , 2002, Mathematical biosciences.

[48]  James S. Muldowney,et al.  Dynamics of Differential Equations on Invariant Manifolds , 2000 .

[49]  James S. Muldowney,et al.  On Bendixson′s Criterion , 1993 .

[50]  I modelli matematici nella indagine epidemiologica. 1) Applicazione all’epidemia di colera verificatasi in Bari nel 1973 , 1977 .