A Structural Average of Labeled Merge Trees for Uncertainty Visualization

Physical phenomena in science and engineering are frequently modeled using scalar fields. In scalar field topology, graph-based topological descriptors such as merge trees, contour trees, and Reeb graphs are commonly used to characterize topological changes in the (sub)level sets of scalar fields. One of the biggest challenges and opportunities to advance topology-based visualization is to understand and incorporate uncertainty into such topological descriptors to effectively reason about their underlying data. In this paper, we study a structural average of a set of labeled merge trees and use it to encode uncertainty in data. Specifically, we compute a 1-center tree that minimizes its maximum distance to any other tree in the set under a well-defined metric called the interleaving distance. We provide heuristic strategies that compute structural averages of merge trees whose labels do not fully agree. We further provide an interactive visualization system that resembles a numerical calculator that takes as input a set of merge trees and outputs a tree as their structural average. We also highlight structural similarities between the input and the average and incorporate uncertainty information for visual exploration. We develop a novel measure of uncertainty, referred to as consistency, via a metric-space view of the input trees. Finally, we demonstrate an application of our framework through merge trees that arise from ensembles of scalar fields. Our work is the first to employ interleaving distances and consistency to study a global, mathematically rigorous, structural average of merge trees in the context of uncertainty visualization.

[1]  Michael J. Fischer,et al.  An improved equivalence algorithm , 1964, CACM.

[2]  Herbert Edelsbrunner,et al.  Simulation of simplicity: a technique to cope with degenerate cases in geometric algorithms , 1988, SCG '88.

[3]  Zvi Galil,et al.  Data structures and algorithms for disjoint set union problems , 1991, CSUR.

[4]  Valerio Pascucci,et al.  The contour spectrum , 1997, Proceedings. Visualization '97 (Cat. No. 97CB36155).

[5]  Valerio Pascucci,et al.  Contour trees and small seed sets for isosurface traversal , 1997, SCG '97.

[6]  Alex T. Pang,et al.  Approaches to uncertainty visualization , 1996, The Visual Computer.

[7]  Jesse Freeman,et al.  in Morse theory, , 1999 .

[8]  Jack Snoeyink,et al.  Computing contour trees in all dimensions , 2000, SODA '00.

[9]  Alex T. Pang,et al.  Volume Rendering Data with Uncertainty Information , 2001, VisSym.

[10]  Michael T. Wolfinger,et al.  Barrier Trees of Degenerate Landscapes , 2002 .

[11]  Valerio Pascucci,et al.  Efficient computation of the topology of level sets , 2002, IEEE Visualization, 2002. VIS 2002..

[12]  Herbert Edelsbrunner,et al.  Topological Persistence and Simplification , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[13]  Valerio Pascucci,et al.  Morse-smale complexes for piecewise linear 3-manifolds , 2003, SCG '03.

[14]  Herbert Edelsbrunner,et al.  Hierarchical Morse—Smale Complexes for Piecewise Linear 2-Manifolds , 2003, Discret. Comput. Geom..

[15]  Ross Brown Animated visual vibrations as an uncertainty visualisation technique , 2004, GRAPHITE '04.

[16]  Leonidas J. Guibas,et al.  Persistence barcodes for shapes , 2004, SGP '04.

[17]  Penny Rheingans,et al.  Point-based probabilistic surfaces to show surface uncertainty , 2004, IEEE Transactions on Visualization and Computer Graphics.

[18]  Yuriko Takeshima,et al.  Topological volume skeletonization and its application to transfer function design , 2004, Graph. Model..

[19]  Mark Gahegan,et al.  A typology for visualizing uncertainty , 2005, IS&T/SPIE Electronic Imaging.

[20]  Valerio Pascucci,et al.  Multi-Resolution computation and presentation of Contour Trees , 2005 .

[21]  Heidrun Schumann,et al.  The Visualization of Uncertain Data: Methods and Problems , 2006, SimVis.

[22]  Hans Hagen,et al.  Methods for Presenting Statistical Information: The Box Plot , 2006, VLUDS.

[23]  Valerio Pascucci,et al.  Topological Landscapes: A Terrain Metaphor for Scientific Data , 2007, IEEE Transactions on Visualization and Computer Graphics.

[24]  M. Sheelagh T. Carpendale,et al.  Visualization of Uncertainty in Lattices to Support Decision-Making , 2007, EuroVis.

[25]  R. Ghrist Barcodes: The persistent topology of data , 2007 .

[26]  Facundo Mémoli,et al.  Topological Methods for the Analysis of High Dimensional Data Sets and 3D Object Recognition , 2007, PBG@Eurographics.

[27]  Mary Czerwinski,et al.  CandidTree: visualizing structural uncertainty in similar hierarchies , 2007, Inf. Vis..

[28]  Christopher R. Johnson,et al.  Towards the visualization of multi- Dimensional stochastic distribution data , 2008 .

[29]  Leonidas J. Guibas,et al.  Proximity of persistence modules and their diagrams , 2009, SCG '09.

[30]  Robert J. Moorhead,et al.  A User Study to Compare Four Uncertainty Visualization Methods for 1D and 2D Datasets , 2009, IEEE Transactions on Visualization and Computer Graphics.

[31]  Björn Zehner,et al.  Visualization of gridded scalar data with uncertainty in geosciences , 2010, Comput. Geosci..

[32]  Martin Kraus Visualization of Uncertain Contour Trees , 2010, IMAGAPP/IVAPP.

[33]  Andrew Mercer,et al.  Noodles: A Tool for Visualization of Numerical Weather Model Ensemble Uncertainty , 2010, IEEE Transactions on Visualization and Computer Graphics.

[34]  Ju Lu,et al.  The DIADEM Data Sets: Representative Light Microscopy Images of Neuronal Morphology to Advance Automation of Digital Reconstructions , 2011, Neuroinformatics.

[35]  Harold W. Kuhn,et al.  The Hungarian method for the assignment problem , 1955, 50 Years of Integer Programming.

[36]  Hanchuan Peng,et al.  V3D enables real-time 3D visualization and quantitative analysis of large-scale biological image data sets , 2010, Nature Biotechnology.

[37]  Hans-Christian Hege,et al.  Probabilistic Marching Cubes , 2011, Comput. Graph. Forum.

[38]  Hans-Christian Hege,et al.  Positional Uncertainty of Isocontours: Condition Analysis and Probabilistic Measures , 2011, IEEE Transactions on Visualization and Computer Graphics.

[39]  Gerik Scheuermann,et al.  Visualization of High-Dimensional Point Clouds Using Their Density Distribution's Topology , 2011, IEEE Transactions on Visualization and Computer Graphics.

[40]  Paul Rosen,et al.  From Quantification to Visualization: A Taxonomy of Uncertainty Visualization Approaches , 2011, WoCoUQ.

[41]  Samuel Gerber,et al.  Data Analysis with the Morse-Smale Complex: The msr Package for R , 2012 .

[42]  David Sanchez,et al.  Cophenetic metrics for phylogenetic trees, after Sokal and Rohlf , 2013, BMC Bioinformatics.

[43]  Dongbin Xiu,et al.  INTERACTIVE VISUALIZATION OF PROBABILITY AND CUMULATIVE DENSITY FUNCTIONS. , 2012, International journal for uncertainty quantification.

[44]  Virginia Johnson Enumeration Results On Leaf Labeled Trees , 2012 .

[45]  Rüdiger Westermann,et al.  Visualization of Global Correlation Structures in Uncertain 2D Scalar Fields , 2012, Comput. Graph. Forum.

[46]  Hanchuan Peng,et al.  APP2: automatic tracing of 3D neuron morphology based on hierarchical pruning of a gray-weighted image distance-tree , 2013, Bioinform..

[47]  Gunther H. Weber,et al.  Interleaving Distance between Merge Trees , 2013 .

[48]  Ross T. Whitaker,et al.  Contour Boxplots: A Method for Characterizing Uncertainty in Feature Sets from Simulation Ensembles , 2013, IEEE Transactions on Visualization and Computer Graphics.

[49]  David J. Duke,et al.  Joint Contour Nets: Computation and properties , 2013, 2013 IEEE Pacific Visualization Symposium (PacificVis).

[50]  Song Zhang,et al.  A CONTOUR TREE BASED VISUALIZATION FOR EXPLORING DATA WITH UNCERTAINTY , 2013 .

[51]  Rüdiger Westermann,et al.  CORRELATION VISUALIZATION FOR STRUCTURAL UNCERTAINTY ANALYSIS , 2013 .

[52]  Rüdiger Westermann,et al.  Visualizing the Variability of Gradients in Uncertain 2D Scalar Fields , 2013, IEEE Transactions on Visualization and Computer Graphics.

[53]  P. Y. Lum,et al.  Extracting insights from the shape of complex data using topology , 2013, Scientific Reports.

[54]  Rüdiger Westermann,et al.  Visualizing the stability of critical points in uncertain scalar fields , 2014, Comput. Graph..

[55]  Manuel Menezes de Oliveira Neto,et al.  Overview and State-of-the-Art of Uncertainty Visualization , 2014, Scientific Visualization.

[56]  Joseph Salmon,et al.  Mandatory Critical Points of 2D Uncertain Scalar Fields , 2014, Comput. Graph. Forum.

[57]  Bernd Hamann,et al.  Measuring the Distance Between Merge Trees , 2014, Topological Methods in Data Analysis and Visualization.

[58]  Ulrich Bauer,et al.  Measuring Distance between Reeb Graphs , 2013, SoCG.

[59]  Vin de Silva,et al.  Metrics for Generalized Persistence Modules , 2013, Found. Comput. Math..

[60]  Kyle Fox,et al.  Computing the Gromov-Hausdorff Distance for Metric Trees , 2015, ISAAC.

[61]  Sayan Mukherjee,et al.  Contour trees of uncertain terrains , 2015, SIGSPATIAL/GIS.

[62]  Ulrich Bauer,et al.  Strong Equivalence of the Interleaving and Functional Distortion Metrics for Reeb Graphs , 2014, SoCG.

[63]  Song Zhang,et al.  Visualizing 2D scalar fields with hierarchical topology , 2015, 2015 IEEE Pacific Visualization Symposium (PacificVis).

[64]  Tianming Liu,et al.  SmartTracing: self-learning-based Neuron reconstruction , 2015, Brain Informatics.

[65]  Hans Hagen,et al.  A Survey of Topology‐based Methods in Visualization , 2016, Comput. Graph. Forum.

[66]  Hang Zhou,et al.  NeuroGPS-Tree: automatic reconstruction of large-scale neuronal populations with dense neurites , 2015, Nature Methods.

[67]  Ulrich Bauer,et al.  An Edit Distance for Reeb Graphs , 2016, 3DOR@Eurographics.

[68]  Amit Patel,et al.  Categorified Reeb Graphs , 2015, Discret. Comput. Geom..

[69]  Vin de Silva,et al.  Theory of interleavings on categories with a flow , 2017, 1706.04095.

[70]  Henry Markram,et al.  A Topological Representation of Branching Neuronal Morphologies , 2017, Neuroinformatics.

[71]  Valerio Pascucci,et al.  Exploring the evolution of pressure-perturbations to understand atmospheric phenomena , 2017, 2017 IEEE Pacific Visualization Symposium (PacificVis).

[72]  Steve Oudot,et al.  Local Equivalence and Intrinsic Metrics between Reeb Graphs , 2017, SoCG.

[73]  Yanjie Li,et al.  Metrics for comparing neuronal tree shapes based on persistent homology , 2016, bioRxiv.

[74]  Berend Smit,et al.  High-Throughput Screening Approach for Nanoporous Materials Genome Using Topological Data Analysis: Application to Zeolites , 2018, Journal of chemical theory and computation.

[75]  Joshua A. Levine,et al.  The Topology ToolKit , 2018, IEEE Transactions on Visualization and Computer Graphics.

[76]  Elizabeth Munch,et al.  The ℓ∞-Cophenetic Metric for Phylogenetic Trees as an Interleaving Distance , 2018, Association for Women in Mathematics Series.

[77]  Steve Oudot,et al.  Intrinsic Interleaving Distance for Merge Trees , 2019, ArXiv.

[78]  Ulrich Bauer,et al.  The Reeb Graph Edit Distance is Universal , 2018, SoCG.

[79]  Dmitriy Smirnov,et al.  Triplet Merge Trees , 2020 .

[80]  Talha Bin Masood,et al.  Edit Distance between Merge Trees , 2020, IEEE Transactions on Visualization and Computer Graphics.