Review of recent progress in multilayer solution-processed organic light-emitting diodes

Abstract. Organic light-emitting diodes (OLEDs) have become a promising candidate for lighting and display applications. High efficiency OLEDs require a multilayer device architecture to provide exciton confinement and balance charge transport. Conventional OLEDs are made by vacuum process, and the manufacturing cost can be reduced by solution processing. However, unlike vacuum-deposited OLEDs, solution-processed multilayer OLEDs are more challenging to make. The key for multilayer solution processing is to have the layer structure which can withstand solvents used in subsequent processing. We review the materials’ strategies to make multilayer solution-processed OLEDs. Specifically, we will discuss the use of cross-linkable organic materials, metal oxides, and orthogonal solvent systems to deposit various functional layers in an OLED.

[1]  Teng Fei,et al.  Multilayer Polymer Stacking by In Situ Electrochemical Polymerization for Color‐Stable White Electroluminescence , 2011, Advanced materials.

[2]  Enrico Orselli,et al.  Orange phosphorescent organic light-emitting diodes with high operational stability , 2012 .

[3]  Ying Zheng,et al.  Efficient deep-blue phosphorescent organic light-emitting device with improved electron and exciton confinement , 2008 .

[4]  Tae-Woo Lee,et al.  An easy route to red emitting homoleptic IrIII complex for highly efficient solution-processed phosphorescent organic light-emitting diodes. , 2014, Chemistry.

[5]  Tobin J. Marks,et al.  A polymer blend approach to fabricating the hole transport layer for polymer light-emitting diodes , 2004 .

[6]  Samson A. Jenekhe,et al.  High-performance multilayered phosphorescent OLEDs by solution-processed commercial electron-transport materials , 2012 .

[7]  Jin Jang,et al.  Improving the lifetime of a polymer light-emitting diode by introducing solution processed tungsten-oxide , 2013 .

[8]  Samson A Jenekhe,et al.  Solution‐Processed Highly Efficient Blue Phosphorescent Polymer Light‐Emitting Diodes Enabled by a New Electron Transport Material , 2010, Advanced materials.

[9]  Junji Kido,et al.  Highly Efficient Organic Blue‐and White‐Light‐Emitting Devices Having a Carrier‐ and Exciton‐Confining Structure for Reduced Efficiency Roll‐Off , 2008 .

[10]  Klaus Meerholz,et al.  Effect of dopant concentration on charge transport in crosslinkable polymers , 2008 .

[11]  Sung Cheol Yoon,et al.  Utilization of “thiol–ene” photo cross-linkable hole-transporting polymers for solution-processed multilayer organic light-emitting diodes , 2014 .

[12]  Wei Jiang,et al.  A high triplet energy small molecule based thermally cross-linkable hole-transporting material for solution-processed multilayer blue electrophosphorescent devices , 2015 .

[13]  Thuc-Quyen Nguyen,et al.  Controlling ion motion in polymer light-emitting diodes containing conjugated polyelectrolyte electron injection layers. , 2011, Journal of the American Chemical Society.

[14]  Jan Birnstock,et al.  High-efficiency and low-voltage p‐i‐n electrophosphorescent organic light-emitting diodes with double-emission layers , 2004 .

[15]  Thomas Riedl,et al.  Inverted Organic Solar Cells with Sol–Gel Processed High Work‐Function Vanadium Oxide Hole‐Extraction Layers , 2011 .

[16]  Fei Huang,et al.  High-efficiency electron injection cathode of Au for polymer light-emitting devices , 2005 .

[17]  Rui Liu,et al.  Nickel Oxide Hole Injection/Transport Layers for Efficient Solution-Processed Organic Light-Emitting Diodes , 2014 .

[18]  Shizuo Tokito,et al.  Highly efficient phosphorescence from organic light-emitting devices with an exciton-block layer , 2001 .

[19]  Franky So,et al.  Phosphorescent organic light emitting diodes with a cross-linkable hole transporting material , 2014 .

[20]  Do-Young Kim,et al.  The effect of molybdenum oxide interlayer on organic photovoltaic cells , 2009, Organic Photonics + Electronics.

[21]  Fei Huang,et al.  Thermally Cross-Linkable Hole-Transporting Materials on Conducting Polymer: Synthesis, Characterization, and Applications for Polymer Light-Emitting Devices , 2008 .

[22]  Biwu Ma,et al.  Multifunctional Crosslinkable Iridium Complexes as Hole Transporting/Electron Blocking and Emitting Materials for Solution‐Processed Multilayer Organic Light‐Emitting Diodes , 2009 .

[23]  Hon Hang Fong,et al.  Orthogonal Processing and Patterning Enabled by Highly Fluorinated Light‐Emitting Polymers , 2011, Advanced materials.

[24]  Junji Kido,et al.  Thermally cross-linkable host materials for enabling solution-processed multilayer stacks in organic light-emitting devices , 2013 .

[25]  Gregor Schwartz,et al.  Combination of a polyaniline anode and doped charge transport layers for high-efficiency organic light emitting diodes , 2007 .

[26]  Fei Huang,et al.  Highly Efficient Polymer White‐Light‐Emitting Diodes Based on Lithium Salts Doped Electron Transporting Layer , 2009 .

[27]  M. Chhowalla Synthesis and Applications , 2016 .

[28]  Klaus Meerholz,et al.  Highly efficient solution-processed phosphorescent multilayer organic light-emitting diodes based on small-molecule hosts , 2007 .

[29]  Junji Kido,et al.  Pyridine‐Containing Triphenylbenzene Derivatives with High Electron Mobility for Highly Efficient Phosphorescent OLEDs , 2008 .

[30]  György Vida,et al.  Characterization of Tungsten Surfaces by Simultaneous Work Function and Secondary Electron Emission Measurements , 2003, Microscopy and Microanalysis.

[31]  H. Bolink,et al.  Hybrid Organic–Inorganic Light‐Emitting Diodes , 2011, Advanced materials.

[32]  Chang-Lyoul Lee,et al.  Molecularly Controlled Interfacial Layer Strategy Toward Highly Efficient Simple‐Structured Organic Light‐Emitting Diodes , 2012, Advanced materials.

[33]  Alan J. Heeger,et al.  Solution‐cast films of polyaniline: Optical‐quality transparent electrodes , 1992 .

[34]  Klaus Meerholz,et al.  Highly Efficient Polymeric Electrophosphorescent Diodes , 2006 .

[35]  Tae-Woo Lee,et al.  Soluble self-doped conducting polymer compositions with tunable work function as hole injection/extraction layers in organic optoelectronics. , 2011, Angewandte Chemie.

[36]  Thomas Riedl,et al.  Solution processed metal-oxides for organic electronic devices , 2013 .

[37]  Biwu Ma,et al.  Facile Photo‐Crosslinking of Azide‐Containing Hole‐Transporting Polymers for Highly Efficient, Solution‐Processed, Multilayer Organic Light Emitting Devices , 2014 .

[38]  Klaus Meerholz,et al.  New crosslinkable hole conductors for blue-phosphorescent organic light-emitting diodes. , 2007, Angewandte Chemie.

[39]  Ken-ichi Nakayama,et al.  2-Phenylpyrimidine skeleton-based electron-transport materials for extremely efficient green organic light-emitting devices. , 2008, Chemical communications.

[40]  Jae-Wook Kang,et al.  A host material containing tetraphenylsilane for phosphorescent OLEDs with high efficiency and operational stability , 2008 .

[41]  Samson A. Jenekhe,et al.  New Solution‐Processable Electron Transport Materials for Highly Efficient Blue Phosphorescent OLEDs , 2011 .

[42]  Rui Liu,et al.  Stable solution processed hole injection material for organic light-emitting diodes , 2014 .

[43]  N. Camaioni,et al.  Polymer- and carbon-based electrodes for polymer solar cells: Toward low-cost, continuous fabrication over large area , 2012 .

[44]  Tae-Woo Lee,et al.  Electrophosphorescent devices with solution processible emitter and hole transport layer stack , 2012 .

[45]  Fulvia Villani,et al.  Analysis of the performances of organic light‐emitting devices with a doped or an undoped polyaniline–poly(4‐styrenesulfonate) hole‐injection layer , 2011 .

[46]  Chih-I Wu,et al.  Solution-processed hexaazatriphenylene hexacarbonitrile as a universal hole-injection layer for organic light-emitting diodes , 2013 .

[47]  Junji Kido,et al.  Novel four-pyridylbenzene-armed biphenyls as electron-transport materials for phosphorescent OLEDs. , 2008, Organic letters.

[48]  Klaus Meerholz,et al.  The Simple Way to Solution‐Processed Multilayer OLEDs – Layered Block‐Copolymer Networks by Living Cationic Polymerization , 2009 .

[49]  Malte C. Gather,et al.  Highly-efficient solution-processed phosphorescent multi-layer organic light-emitting diodes investigated by electromodulation spectroscopy , 2009 .

[50]  C. Tang,et al.  Organic Electroluminescent Diodes , 1987 .

[51]  Changsheng Shi,et al.  Solution-processed single-emitting-layer white organic light-emitting diodes based on small molecules with efficiency/CRI/color-stability trade-off. , 2013, Optics express.

[52]  Mehdi Jaymand,et al.  Recent progress in chemical modification of polyaniline , 2013 .

[53]  Klaus Meerholz,et al.  Solution processed organic double light-emitting layer diode based on cross-linkable small molecular systems. , 2013, Angewandte Chemie.

[54]  Junji Kido,et al.  Ultra High Efficiency Green Organic Light-Emitting Devices , 2006 .

[55]  Fei Huang,et al.  Crosslinkable hole-transporting materials for solution processed polymer light-emitting diodes , 2008 .

[56]  Yun Chi,et al.  Crosslinkable Hole‐Transport Layer on Conducting Polymer for High‐Efficiency White Polymer Light‐Emitting Diodes , 2007 .

[57]  Uli Lemmer,et al.  Molybdenum oxide anode buffer layers for solution processed, blue phosphorescent small molecule organic light emitting diodes , 2013 .

[58]  Samson A. Jenekhe,et al.  Solution‐Processed, Alkali Metal‐Salt‐Doped, Electron‐Transport Layers for High‐Performance Phosphorescent Organic Light‐Emitting Diodes , 2012 .

[59]  Lei Ding,et al.  Aqueous solution-processed MoO3 thick films as hole injection and short-circuit barrier layer in large-area organic light-emitting devices , 2014 .

[60]  Talha M. Khan,et al.  A Universal Method to Produce Low–Work Function Electrodes for Organic Electronics , 2012, Science.

[61]  George G. Malliaras,et al.  Orthogonal processing: A new strategy for organic electronics , 2011 .

[62]  Jin Jang,et al.  Solution processed polymer light emitting diode with vanadium‐oxide doped PEDOT:PSS , 2015 .

[63]  Hendrik Faber,et al.  High-Efficiency, Solution-Processed, Multilayer Phosphorescent Organic Light-Emitting Diodes with a Copper Thiocyanate Hole-Injection/Hole-Transport Layer , 2014, Advanced materials.

[64]  Bin Liu,et al.  Organometallic Conjugated Polyelectrolytes: Synthesis and Applications , 2014, Journal of Inorganic and Organometallic Polymers and Materials.

[65]  Daniel Volz,et al.  Auto-catalysed crosslinking for next-generation OLED-design , 2012 .

[66]  Mark E. Thompson,et al.  New Thermally Cross-Linkable Polymer and Its Application as a Hole-Transporting Layer for Solution Processed Multilayer Organic Light Emitting Diodes , 2007 .

[67]  Dongge Ma,et al.  Efficient phosphorescent polymer yellow-light-emitting diodes based on solution-processed small molecular electron transporting layer. , 2011, ACS applied materials & interfaces.

[68]  Dieter Neher,et al.  Polymer electrophosphorescence devices with high power conversion efficiencies , 2004 .

[69]  Xuezhong Jiang,et al.  Hole injection polymer effect on degradation of organic light-emitting diodes , 2013 .

[70]  Fei Huang,et al.  Water/Alcohol Soluble Conjugated Polymers as Highly Efficient Electron Transporting/Injection Layer in Optoelectronic Devices , 2010 .

[71]  Franky So,et al.  Passivation of Metal Oxide Surfaces for High-Performance Organic and Hybrid Optoelectronic Devices , 2015 .

[72]  S. Forrest,et al.  Nearly 100% internal phosphorescence efficiency in an organic light emitting device , 2001 .

[73]  Changsheng Shi,et al.  Solution-processable small molecules as efficient universal bipolar host for blue, green and red phosphorescent inverted OLEDs , 2012 .

[74]  Noor Azrina Talik,et al.  The efficiency enhancement of single-layer solution-processed blue phosphorescent organic light emitting diodes by hole injection layer modification , 2014 .

[75]  Tae-Woo Lee,et al.  Polyaniline-based conducting polymer compositions with a high work function for hole-injection layers in organic light-emitting diodes: formation of ohmic contacts. , 2011, ChemSusChem.

[76]  John R. Reynolds,et al.  Solution‐Processed Nickel Oxide Hole Transport Layers in High Efficiency Polymer Photovoltaic Cells , 2013 .

[77]  Fei Huang,et al.  Thermally Cross-Linkable Hole-Transporting Materials for Improving Hole Injection in Multilayer Blue-Emitting Phosphorescent Polymer Light-Emitting Diodes , 2008 .

[78]  Jong-Hyun Ahn,et al.  Extremely efficient flexible organic light-emitting diodes with modified graphene anode , 2012, Nature Photonics.

[79]  Nasser N Peyghambarian,et al.  Covalently Interlinked Organic LED Transport Layers via Spin-Coating/Siloxane Condensation , 1999 .

[80]  Junji Kido,et al.  Solution-processed multilayer small-molecule light-emitting devices with high-efficiency white-light emission , 2014, Nature Communications.

[81]  Wei Jiang,et al.  Alcohol-soluble electron-transport small molecule for fully solution-processed multilayer white electrophosphorescent devices. , 2014, Organic letters.

[82]  J. Jang,et al.  Organic light-emitting diode with polyaniline-poly(styrene sulfonate) as a hole injection layer , 2008 .

[83]  Malte C. Gather,et al.  Advanced Device Architecture for Highly Efficient Organic Light‐Emitting Diodes with an Orange‐Emitting Crosslinkable Iridium(III) Complex , 2008 .

[84]  Alex K.-Y. Jen,et al.  Thermally crosslinked hole-transporting layers for cascade hole-injection and effective electron-blocking/exciton-confinement in phosphorescent polymer light-emitting diodes , 2006 .

[85]  R. N. Marks,et al.  Light-emitting diodes based on conjugated polymers , 1990, Nature.

[86]  Wei Li,et al.  Organic Host Materials for Solution-Processed Phosphorescent Organic Light-Emitting Diodes , 2014 .

[87]  Seth R. Marder,et al.  Approaches to Solution-Processed Multilayer Organic Light-Emitting Diodes Based on Cross-Linking† , 2011 .

[88]  Yong Qiu,et al.  Efficient solution-processed small-molecule single emitting layer electrophosphorescent white light-emitting diodes , 2010 .

[89]  Xuezhong Jiang,et al.  Highly Efficient Hole Injection Using Polymeric Anode Materials for Small-Molecule Organic Light-Emitting Diodes , 2009 .

[90]  Fei Huang,et al.  Efficient Electron Injection from a Bilayer Cathode Consisting of Aluminum and Alcohol‐/Water‐Soluble Conjugated Polymers , 2004 .

[91]  Do-Young Kim,et al.  Energy level evolution of molybdenum trioxide interlayer between indium tin oxide and organic semiconductor , 2010 .

[92]  Young-Hun Byun,et al.  Small molecule based and solution processed highly efficient red electrophosphorescent organic light emitting devices , 2007 .

[93]  Fei Huang,et al.  Materials and Devices toward Fully Solution Processable Organic Light-Emitting Diodes† , 2011 .

[94]  Ruth Shinar,et al.  High‐Efficiency Solution‐Processed Small Molecule Electrophosphorescent Organic Light‐Emitting Diodes , 2011, Advanced materials.

[95]  Michael Bruns,et al.  Tungsten Oxide Buffer Layers Fabricated in an Inert Sol‐Gel Process at Room‐Temperature for Blue Organic Light‐Emitting Diodes , 2013, Advanced materials.

[96]  Changhee Lee,et al.  Improved performances in organic and polymer light‐emitting diodes using solution‐processed vanadium pentoxide as a hole injection layer , 2012 .

[97]  Klaus Meerholz,et al.  Crosslinkable TAPC‐Based Hole‐Transport Materials for Solution‐Processed Organic Light‐Emitting Diodes with Reduced Efficiency Roll‐Off , 2013 .

[98]  Changsheng Shi,et al.  Room-temperature sol-gel derived molybdenum oxide thin films for efficient and stable solution-processed organic light-emitting diodes. , 2013, ACS applied materials & interfaces.

[99]  Tae-Woo Lee,et al.  Self‐Organized Gradient Hole Injection to Improve the Performance of Polymer Electroluminescent Devices , 2007 .

[100]  Malte C. Gather,et al.  Solution‐Processed Full‐Color Polymer Organic Light‐Emitting Diode Displays Fabricated by Direct Photolithography , 2007 .

[101]  김성현,et al.  Solution processed WO3 layer for the replacement of PEDOT:PSS layer in organic photovoltaic cells , 2012 .

[102]  Bernard Kippelen,et al.  Crosslinking Using Rapid Thermal Processing for the Fabrication of Efficient Solution‐Processed Phosphorescent Organic Light‐Emitting Diodes , 2013, Advanced materials.

[103]  Kyoung Soo Yook,et al.  Small Molecule Host Materials for Solution Processed Phosphorescent Organic Light‐Emitting Diodes , 2014, Advanced materials.

[104]  S. R. Forrest,et al.  High-efficiency fluorescent organic light-emitting devices using a phosphorescent sensitizer , 2000, Nature.

[105]  Franky So,et al.  Metal oxides for interface engineering in polymer solar cells , 2012 .

[106]  Do-Young Kim,et al.  Energy level evolution of air and oxygen exposed molybdenum trioxide films , 2010 .

[107]  Daniel Moses,et al.  High‐Efficiency Polymer‐Based Electrophosphorescent Devices , 2002 .

[108]  J. Reynolds,et al.  Poly(3,4‐ethylenedioxythiophene) and Its Derivatives: Past, Present, and Future , 2000 .

[109]  Tae-Woo Lee,et al.  Hole-injecting conducting-polymer compositions for highly efficient and stable organic light-emitting diodes , 2005 .

[110]  Junji Kido,et al.  Fabrication of organic light-emitting devices comprising stacked light-emitting units by solution-based processes , 2014 .