Grothendieck groups in extriangulated categories

Abstract Extriangulated categories were introduced by Nakaoka and Palu to give a unification of properties in exact categories and triangulated categories. We consider in this article the Grothendieck group K 0 ( C ) of an extriangulated category C . We show that a locally finite extriangulated category C always has almost split extensions and in this case the relations of the Grothendieck group K 0 ( C ) are generated by the Auslander-Rieten E -triangles. We give a partial converse result when restricting to the triangulated categories with a cluster tilting subcategory: in the triangulated category with a cluster tilting subcategory, the relations of the Grothendieck group are generated by AR-triangles if and only if the triangulated category is locally finite. We also show that there is a one-to-one correspondence between subgroups of K 0 ( C ) containing the image of G and dense G − (co)resolving subcategories of C where G a generator of C , which generalizes results about classifying subcategories of a triangulated or exact category C by subgroups of K 0 ( C ) .

[1]  From triangulated categories to abelian categories: cluster tilting in a general framework , 2006, math/0605100.

[2]  M. Bridger,et al.  Stable Module Theory , 1969 .

[3]  M. Kleiner Approximations and Almost Split Sequences in Homologically Finite Subcategories , 1997 .

[4]  M. C. R. Butler Grothendieck groups and almost split sequences , 1981 .

[5]  J. Xiao,et al.  Relations for the Grothendieck groups of triangulated categories , 2002 .

[6]  Johanne Haugland Auslander–Reiten Triangles and Grothendieck Groups of Triangulated Categories , 2019, Algebras and Representation Theory.

[7]  Jstor,et al.  Proceedings of the American Mathematical Society , 1950 .

[8]  I. Reiten,et al.  Grothendieck groups of algebras and orders , 1986 .

[9]  Amit Shah Auslander-Reiten theory in quasi-abelian and Krull-Schmidt categories , 2018, Journal of Pure and Applied Algebra.

[10]  K. Erdmann,et al.  Algebras and Representation Theory , 2018 .

[11]  Bin Zhu Cluster-Tilted Algebras and Their Intermediate Coverings , 2008, 0808.2352.

[12]  Taylor Francis Online Communications in algebra , 1974 .

[13]  I. Reiten,et al.  Representation theory of artin algebras iii almost split sequences , 1975 .

[14]  R. Thomason The classification of triangulated subcategories , 1997, Compositio Mathematica.

[15]  P. A. Bergh,et al.  The Grothendieck group of an n-angulated category , 2012, 1205.5697.

[16]  I. Klep The Real Spectrum of a Noncommutative Ring and the Artin-Lang Homomorphism Theorem , 2018 .

[17]  Yann Palu,et al.  Extriangulated categories, Hovey twin cotorsion pairs and model structures , 2019 .

[18]  I. Reiten,et al.  Cluster-tilted algebras are Gorenstein and stably Calabi–Yau , 2005, math/0512471.

[19]  M. Auslander Relations for Grothendieck groups of Artin algebras , 1984 .

[20]  Shiping Liu,et al.  Almost split sequences in tri-exact categories , 2020, Journal of Pure and Applied Algebra.

[21]  Vincent Pilaud,et al.  ASSOCIAHEDRA FOR FINITE TYPE CLUSTER ALGEBRAS AND MINIMAL RELATIONS BETWEEN g-VECTORS , 2019 .

[22]  Tilting theory and cluster combinatorics , 2004, math/0402054.

[23]  H. Matsui CLASSIFYING DENSE SUBCATEGORIES OF EXACT CATEGORIES VIA GROTHENDIECK GROUPS , 2016 .

[24]  M. Auslander,et al.  Almost split sequences in subcategories , 1981 .

[25]  O. Iyama Mutations in triangulated categories and rigid Cohen-Macaulay modules , 2006 .

[26]  O. Iyama τ-Categories I: Ladders , 2005 .

[27]  H. Nakaoka,et al.  $n$-exangulated categories , 2017, 1709.06689.

[28]  E. Marcos,et al.  The grothendieck group of the category of modules of finite projective dimension over certain weakly triangular algebras , 2000 .

[29]  Idun Reiten,et al.  Noetherian hereditary abelian categories satisfying Serre duality , 2002 .

[30]  Dieter Happel,et al.  Triangulated categories in the representation theory of finite dimensional algebras , 1988 .

[31]  Panyue Zhou,et al.  Triangulated quotient categories revisited , 2016, 1608.00297.

[32]  H. Nakaoka,et al.  Hearts of twin cotorsion pairs on extriangulated categories , 2017, Journal of Algebra.

[33]  Johanne Haugland,et al.  The Grothendieck Group of an n-exangulated Category , 2019, Appl. Categorical Struct..

[34]  Auslander Maurice,et al.  Representation Theory of Artin Algebras I , 1974 .

[35]  Apostolos Beligiannis Auslander-Reiten Triangles, Ziegler Spectra and Gorenstein Rings , 2004 .

[36]  Yann Palu,et al.  Auslander–Reiten theory in extriangulated categories , 2018, Transactions of the American Mathematical Society, Series B.

[37]  C. Ringel Tame Algebras and Integral Quadratic Forms , 1985 .

[38]  Shiping Liu Auslander-Reiten theory in a Krull-Schmidt category , 2010 .

[39]  T. Hall,et al.  Journal of Algebra , 1964, Nature.