Photometric redshift analysis in the Dark Energy Survey Science Verification data

We present results from a study of the photometric redshift performance of the Dark Energy Survey (DES), using the early data from a Science Verification (SV) period of observations in late 2012 and early 2013 that provided science-quality images for almost 200 sq.~deg.~at the nominal depth of the survey. We assess the photometric redshift performance using about 15000 galaxies with spectroscopic redshifts available from other surveys. These galaxies are used, in different configurations, as a calibration sample, and photo-$z$'s are obtained and studied using most of the existing photo-$z$ codes. A weighting method in a multi-dimensional color-magnitude space is applied to the spectroscopic sample in order to evaluate the photo-$z$ performance with sets that mimic the full DES photometric sample, which is on average significantly deeper than the calibration sample due to the limited depth of spectroscopic surveys. Empirical photo-$z$ methods using, for instance, Artificial Neural Networks or Random Forests, yield the best performance in the tests, achieving core photo-$z$ resolutions $\sigma_{68} \sim 0.08$. Moreover, the results from most of the codes, including template fitting methods, comfortably meet the DES requirements on photo-$z$ performance, therefore, providing an excellent precedent for future DES data sets.

[1]  R. J. Brunner,et al.  Exhausting the Information: Novel Bayesian Combination of Photometric Redshift PDFs , 2014, 1403.0044.

[2]  Ramon Miquel,et al.  Photo-z quality cuts and their effect on the measured galaxy clustering , 2013, 1308.6500.

[3]  Huan Lin,et al.  Spectroscopic failures in photometric redshift calibration: cosmological biases and survey requirements , 2012, 1207.3347.

[4]  A. Fontana,et al.  A CRITICAL ASSESSMENT OF PHOTOMETRIC REDSHIFT METHODS: A CANDELS INVESTIGATION , 2013, 1308.5353.

[5]  A. Mazure,et al.  The VIMOS VLT Deep Survey final data release: a spectroscopic sample of 35 016 galaxies and AGN out to z ~ 6.7 selected with 17.5 ≤ iAB ≤ 24.75 , 2013, 1307.0545.

[6]  R. J. Brunner,et al.  TPZ: photometric redshift PDFs and ancillary information by using prediction trees and random forests , 2013, 1303.7269.

[7]  R. Bender,et al.  Dark matter halo properties from galaxy-galaxy lensing , 2013, 1303.6287.

[8]  R. Bender,et al.  PHOTOMETRIC REDSHIFTS AND SYSTEMATIC VARIATIONS IN THE SPECTRAL ENERGY DISTRIBUTIONS OF LUMINOUS RED GALAXIES FROM SDSS DR7 , 2013, 1303.3005.

[9]  Edwin A. Valentijn,et al.  The Kilo-Degree Survey , 2012, Experimental Astronomy.

[10]  L. Miller,et al.  CFHTLenS: the Canada–France–Hawaii Telescope Lensing Survey – imaging data and catalogue products , 2012, 1210.0032.

[11]  W. M. Wood-Vasey,et al.  THE BARYON OSCILLATION SPECTROSCOPIC SURVEY OF SDSS-III , 2012, 1208.0022.

[12]  W. M. Wood-Vasey,et al.  THE NINTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY: FIRST SPECTROSCOPIC DATA FROM THE SDSS-III BARYON OSCILLATION SPECTROSCOPIC SURVEY , 2012, 1207.7137.

[13]  J. Mohr,et al.  THE BLANCO COSMOLOGY SURVEY: DATA ACQUISITION, PROCESSING, CALIBRATION, QUALITY DIAGNOSTICS, AND DATA RELEASE , 2012, 1204.1210.

[14]  Kenneth Patton,et al.  Status of the Dark Energy Survey Camera (DECam) project , 2010, Other Conferences.

[15]  H. Thomas Diehl,et al.  The Dark Energy Survey Camera (DECam) , 2012 .

[16]  B. Weiner,et al.  The Arizona CDFS Environment Survey (ACES): A Magellan/IMACS Spectroscopic Survey of the Chandra Deep Field-South† , 2011, 1112.0312.

[17]  H. Hoekstra,et al.  CFHTLenS: Improving the quality of photometric redshifts with precision photometry , 2011, 1111.4434.

[18]  SLAC,et al.  Sample variance in photometric redshift calibration: cosmological biases and survey requirements , 2011, 1109.5691.

[19]  D. Gerdes,et al.  PHAT: PHoto-z Accuracy Testing , 2010, 1008.0658.

[20]  Jiangang Hao,et al.  ArborZ: PHOTOMETRIC REDSHIFTS USING BOOSTED DECISION TREES , 2009, The Astrophysical Journal.

[21]  Annabel Sebag ED , 2009, SIGGRAPH '09.

[22]  Karl Glazebrook,et al.  The WiggleZ Dark Energy Survey: survey design and first data release , 2009, 0911.4246.

[23]  Simon J. Lilly,et al.  Photo‐z performance for precision cosmology , 2009, 0910.5735.

[24]  B. Garilli,et al.  THE zCOSMOS 10k-BRIGHT SPECTROSCOPIC SAMPLE , 2009 .

[25]  G. Zamorani,et al.  Photometric redshifts for the CFHTLS T0004 deep and wide fields , 2008, 0811.3326.

[26]  Manda Banerji,et al.  A comparison of six photometric redshift methods applied to 1.5 million luminous red galaxies , 2008, 0812.3831.

[27]  Paolo Coppi,et al.  EAZY: A Fast, Public Photometric Redshift Code , 2008, 0807.1533.

[28]  A. Mazure,et al.  The Vimos VLT deep survey Global properties of 20 000 galaxies in the IAB < 22.5 WIDE survey , 2008, 0804.4568.

[29]  Huan Lin,et al.  Estimating the redshift distribution of photometric galaxy samples – II. Applications and tests of a new method , 2008, 0801.3822.

[30]  N. Benı́tez,et al.  A blind test of photometric redshifts on ground-based data , 2008, 0801.2975.

[31]  Manda Banerji,et al.  Photometric Redshifts for the Dark Energy Survey and VISTA and Implications for Large Scale Structure , 2007, 0711.1059.

[32]  J. Frieman,et al.  Photometric Redshift Error Estimators , 2007, 0711.0962.

[33]  Huan Lin,et al.  A Galaxy Photometric Redshift Catalog for the Sloan Digital Sky Survey Data Release 6 , 2007, 0708.0030.

[34]  G. Lucia,et al.  The hierarchical formation of the brightest cluster galaxies , 2006, astro-ph/0606519.

[35]  S. Maddox,et al.  zCOSMOS: A Large VLT/VIMOS Redshift Survey Covering 0 < z < 3 in the COSMOS Field , 2006, astro-ph/0612291.

[36]  D. Thompson,et al.  The Zurich Extragalactic Bayesian Redshift Analyzer and its first application: COSMOS , 2006, astro-ph/0609044.

[37]  R. Bouwens,et al.  Galaxies in the Hubble Ultra Deep Field. I. Detection, Multiband Photometry, Photometric Redshifts, and Morphology , 2006, astro-ph/0605262.

[38]  B. Garilli,et al.  Accurate photometric redshifts for the CFHT legacy survey calibrated using the VIMOS VLT deep survey , 2006, astro-ph/0603217.

[39]  Kurt Hornik,et al.  kernlab - An S4 Package for Kernel Methods in R , 2004 .

[40]  J. M. Oschmann,et al.  Ground-based Telescopes , 2004 .

[41]  O. Lahav,et al.  ANNz: Estimating Photometric Redshifts Using Artificial Neural Networks , 2003, astro-ph/0311058.

[42]  A. Fontana,et al.  Photometric redshifts with the Multilayer Perceptron Neural Network: Application to the HDF-S and SDSS , 2003, astro-ph/0312064.

[43]  S. J. Lilly,et al.  The Canada-France Deep Fields Survey. III. Photometric Redshift Distribution to IAB = 24 , 2003, astro-ph/0310038.

[44]  G. Bruzual,et al.  Stellar population synthesis at the resolution of 2003 , 2003, astro-ph/0309134.

[45]  Oliver LeFevre,et al.  Commissioning and performances of the VLT-VIMOS , 2003, SPIE Astronomical Telescopes + Instrumentation.

[46]  Princeton University.,et al.  LSST: a complementary probe of dark energy , 2002, astro-ph/0209632.

[47]  V. Narayanan,et al.  Spectroscopic Target Selection in the Sloan Digital Sky Survey: The Main Galaxy Sample , 2002, astro-ph/0206225.

[48]  L. Moscardini,et al.  Measuring the Redshift Evolution of Clustering: the Hubble Deep Field South , 2001, astro-ph/0109453.

[49]  Michael E. Tipping Sparse Bayesian Learning and the Relevance Vector Machine , 2001, J. Mach. Learn. Res..

[50]  V. Narayanan,et al.  Spectroscopic Target Selection for the Sloan Digital Sky Survey: The Luminous Red Galaxy Sample , 2001, astro-ph/0108153.

[51]  S.Cole,et al.  The 2dF Galaxy Redshift Survey: spectra and redshifts , 2001, astro-ph/0106498.

[52]  Chile,et al.  Near-infrared template spectra of normal galaxies: k-corrections, galaxy models and stellar populations , 2001, astro-ph/0104427.

[53]  R. Bender,et al.  The FORS Deep Field: Photometric Data and Photometric Redshifts , 2001 .

[54]  Walter A. Siegmund,et al.  The Sloan Digital Sky Survey: Technical Summary , 2000, astro-ph/0006396.

[55]  John L. Tonry,et al.  A New Strategy for Deep Wide‐Field High‐Resolution Optical Imaging , 2000 .

[56]  Dorian Pyle,et al.  Data Preparation for Data Mining , 1999 .

[57]  N. Benı́tez Bayesian Photometric Redshift Estimation , 1998, astro-ph/9811189.

[58]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[59]  A. Szalay,et al.  A Blind Test of Photometric Redshift Prediction , 1998, astro-ph/9801133.

[60]  A. Kinney,et al.  Template ultraviolet to near-infrared spectra of star-forming galaxies and their application to K-corrections , 1996 .

[61]  E. Bertin,et al.  SExtractor: Software for source extraction , 1996 .

[62]  Yoav Freund,et al.  A decision-theoretic generalization of on-line learning and an application to boosting , 1997, EuroCOLT.

[63]  S. Charlot,et al.  Spectral evolution of stellar populations using isochrone synthesis , 1993 .

[64]  D. Weedman,et al.  Colors and magnitudes predicted for high redshift galaxies , 1980 .