Variance-based global sensitivity analysis via sparse-grid interpolation and cubature
暂无分享,去创建一个
[1] E. E. Myshetskaya,et al. Monte Carlo estimators for small sensitivity indices , 2008, Monte Carlo Methods Appl..
[2] J. Dicapua. Chebyshev Polynomials , 2019, Fibonacci and Lucas Numbers With Applications.
[3] Ronald Cools,et al. Quasi-random integration in high dimensions , 2007, Math. Comput. Simul..
[4] Erich Novak,et al. High dimensional polynomial interpolation on sparse grids , 2000, Adv. Comput. Math..
[5] Thomas Gerstner,et al. Numerical integration using sparse grids , 2004, Numerical Algorithms.
[6] Marco Ratto,et al. Global Sensitivity Analysis , 2008 .
[7] T. J. Rivlin. The Chebyshev polynomials , 1974 .
[8] Ilya M. Sobol,et al. On Global Sensitivity Indices: Monte Carlo Estimates Affected by Random Errors , 2007, Monte Carlo Methods Appl..
[9] Olivier P. Le Maître,et al. Polynomial chaos expansion for sensitivity analysis , 2009, Reliab. Eng. Syst. Saf..
[10] Ilya M. Sobol,et al. Sensitivity Estimates for Nonlinear Mathematical Models , 1993 .
[11] Lloyd N. Trefethen,et al. Is Gauss Quadrature Better than Clenshaw-Curtis? , 2008, SIAM Rev..
[12] Dongbin Xiu,et al. High-Order Collocation Methods for Differential Equations with Random Inputs , 2005, SIAM J. Sci. Comput..
[13] Saltelli Andrea,et al. Global Sensitivity Analysis: The Primer , 2008 .
[14] A. Saltelli,et al. A quantitative model-independent method for global sensitivity analysis of model output , 1999 .
[15] A. Saltelli,et al. Making best use of model evaluations to compute sensitivity indices , 2002 .
[16] Roger M. Cooke,et al. Sample-based estimation of correlation ratio with polynomial approximation , 2007, TOMC.
[17] Harvey M. Wagner,et al. Global Sensitivity Analysis , 1995, Oper. Res..
[18] D. Xiu. Fast numerical methods for stochastic computations: A review , 2009 .