A Nearly-Sublinear Method for Approximating a Column of the Matrix Exponential for Matrices from Large, Sparse Networks

We consider random-walk transition matrices from large social and information networks. For these matrices, we describe and evaluate a fast method to estimate one column of the matrix exponential. Our method runs in sublinear time on networks where the maximum degree grows doubly logarithmic with respect to the number of nodes. For collaboration networks with over 5 million edges, we find it runs in less than a second on a standard desktop machine.

[1]  Pavel Berkhin,et al.  Bookmark-Coloring Algorithm for Personalized PageRank Computing , 2006, Internet Math..

[2]  Ayman Farahat,et al.  Authority Rankings from HITS, PageRank, and SALSA: Existence, Uniqueness, and Effect of Initialization , 2005, SIAM J. Sci. Comput..

[3]  Awad H. Al-Mohy,et al.  Computing the Action of the Matrix Exponential, with an Application to Exponential Integrators , 2011, SIAM J. Sci. Comput..

[4]  John D. Lafferty,et al.  Diffusion Kernels on Graphs and Other Discrete Input Spaces , 2002, ICML.

[5]  Laks V. S. Lakshmanan,et al.  Fast Matrix Computations for Pairwise and Columnwise Commute Times and Katz Scores , 2011, Internet Math..

[6]  M. Newman,et al.  Finding community structure in networks using the eigenvectors of matrices. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[7]  C. Lubich,et al.  On Krylov Subspace Approximations to the Matrix Exponential Operator , 1997 .

[8]  Ernesto Estrada Characterization of 3D molecular structure , 2000 .

[9]  A. Arenas,et al.  Models of social networks based on social distance attachment. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[10]  Cleve B. Moler,et al.  Nineteen Dubious Ways to Compute the Exponential of a Matrix, Twenty-Five Years Later , 1978, SIAM Rev..

[11]  M. Eiermann,et al.  Implementation of a restarted Krylov subspace method for the evaluation of matrix functions , 2008 .

[12]  M. Newman,et al.  The structure of scientific collaboration networks. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[13]  Desmond J. Higham,et al.  Network Properties Revealed through Matrix Functions , 2010, SIAM Rev..

[14]  P. Tseng,et al.  On the convergence of the coordinate descent method for convex differentiable minimization , 1992 .

[15]  M. Benzi,et al.  Quadrature rule-based bounds for functions of adjacency matrices , 2010 .

[16]  Manfred Jaeger,et al.  Proceedings of the 24th Annual International Conference on Machine Learning (ICML 2007) , 2007, ICML 2007.

[17]  Fan Chung Graham,et al.  Local Graph Partitioning using PageRank Vectors , 2006, 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06).

[18]  Yousef Saad,et al.  Efficient Solution of Parabolic Equations by Krylov Approximation Methods , 1992, SIAM J. Sci. Comput..

[19]  Fan Chung,et al.  The heat kernel as the pagerank of a graph , 2007, Proceedings of the National Academy of Sciences.

[20]  Nisheeth K. Vishnoi,et al.  Approximating the exponential, the lanczos method and an Õ(m)-time spectral algorithm for balanced separator , 2011, STOC '12.

[21]  Jérôme Kunegis,et al.  Learning spectral graph transformations for link prediction , 2009, ICML '09.

[22]  Roger B. Sidje,et al.  Expokit: a software package for computing matrix exponentials , 1998, TOMS.