The asymptotic elasticity of utility functions and optimal investment in incomplete markets

The paper studies the problem of maximizing the expected utility of terminal wealth in the framework of a general incomplete semimartingale model of a financial market. We show that the necessary and sufficient condition on a utility function for the validity of several key assertions of the theory to hold true is the requirement that the asymptotic elasticity of the utility function is strictly less then one. (author's abstract)

[1]  F. Smithies,et al.  Convex Functions and Orlicz Spaces , 1962, The Mathematical Gazette.

[2]  D. J. White,et al.  Decision Theory , 2018, Behavioral Finance for Private Banking.

[3]  R. C. Merton,et al.  Lifetime Portfolio Selection under Uncertainty: The Continuous-Time Case , 1969 .

[4]  J. Bismut Conjugate convex functions in optimal stochastic control , 1973 .

[5]  R. C. Merton,et al.  Optimum Consumption and Portfolio Rules in a Continuous-Time Model* , 1975 .

[6]  P. Samuelson LIFETIME PORTFOLIO SELECTION BY DYNAMIC STOCHASTIC PROGRAMMING , 1969 .

[7]  J. Diestel Geometry of Banach Spaces: Selected Topics , 1975 .

[8]  丸山 徹 Convex Analysisの二,三の進展について , 1977 .

[9]  J. Jacod Calcul stochastique et problèmes de martingales , 1979 .

[10]  Stanley R. Pliska,et al.  A Stochastic Calculus Model of Continuous Trading: Optimal Portfolios , 1986, Math. Oper. Res..

[11]  H. Strasser Mathematical Theory of Statistics: Statistical Experiments and Asymptotic Decision Theory , 1986 .

[12]  S. Shreve,et al.  Optimal portfolio and consumption decisions for a “small investor” on a finite horizon , 1987 .

[13]  J. Cox,et al.  Optimal consumption and portfolio policies when asset prices follow a diffusion process , 1989 .

[14]  I. Karatzas Optimization problems in the theory of continuous trading , 1989 .

[15]  L. Foldes,et al.  Conditions for Optimality in the Infinite-Horizon Portfolio-cum-Saving Problem with Semimartingale Investments , 1990 .

[16]  S. Shreve,et al.  Martingale and duality methods for utility maximization in a incomplete market , 1991 .

[17]  Neil D. Pearson,et al.  Consumption and Portfolio Policies With Incomplete Markets and Short‐Sale Constraints: the Finite‐Dimensional Case , 1991 .

[18]  John C. Cox,et al.  A variational problem arising in financial economics , 1991 .

[19]  Neil D. Pearson,et al.  Consumption and portfolio policies with incomplete markets and short-sale constraints: The infinite dimensional case , 1991 .

[20]  Saul D. Jacka,et al.  A Martingale Representation Result and an Application to Incomplete Financial Markets , 1992 .

[21]  Christophe Stricker,et al.  Couverture des actifs contingents et prix maximum , 1994 .

[22]  F. Delbaen,et al.  A general version of the fundamental theorem of asset pricing , 1994 .

[23]  Walter Schachermayer,et al.  The no-arbitrage property under a change of numéraire , 1995 .

[24]  N. Karoui,et al.  Dynamic Programming and Pricing of Contingent Claims in an Incomplete Market , 1995 .

[25]  D. Kramkov Optional decomposition of supermartingales and hedging contingent claims in incomplete security markets , 1996 .

[26]  Hans Föllmer,et al.  Optional decomposition and Lagrange multipliers , 1997, Finance Stochastics.

[27]  H. Föllmer,et al.  Optional decompositions under constraints , 1997 .

[28]  W Schachermeyer The Fundamental Theorem of Asset Pricing for Unbounded Stochastic Processes , 1997 .

[29]  F. Delbaen,et al.  The fundamental theorem of asset pricing for unbounded stochastic processes , 1998 .