Titania@gold plasmonic nanoarchitectures: An ideal photoanode for dye-sensitized solar cells

[1]  A. Pandikumar,et al.  Dual Functional TiO2-Au Nanocomposite Material for Solid-State Dye-Sensitized Solar Cells. , 2015, Journal of nanoscience and nanotechnology.

[2]  T. Sun,et al.  A gold nanorod-based localized surface plasmon resonance platform for the detection of environmentally toxic metal ions. , 2015, The Analyst.

[3]  Plasmon-induced efficiency enhancement on dye-sensitized solar cell by a 3D TNW-AuNP layer. , 2015, ACS applied materials & interfaces.

[4]  Jin Young Kim,et al.  Enhanced photovoltaic properties and long-term stability in plasmonic dye-sensitized solar cells via noncorrosive redox mediator. , 2014, ACS applied materials & interfaces.

[5]  D. Astruc,et al.  Nanogold plasmonic photocatalysis for organic synthesis and clean energy conversion. , 2014, Chemical Society reviews.

[6]  William R. Erwin,et al.  Enhanced Efficiency in Dye-Sensitized Solar Cells with Shape-Controlled Plasmonic Nanostructures , 2014 .

[7]  M. S. Su’ait,et al.  Polymer electrolyte for photoelectrochemical cell and dye-sensitized solar cell: a brief review , 2014, Ionics.

[8]  L. Kavan,et al.  Titania nanofiber photoanodes for dye-sensitized solar cells , 2014 .

[9]  Y. Kang,et al.  Toward Higher Energy Conversion Efficiency for Solid Polymer Electrolyte Dye-Sensitized Solar Cells: Ionic Conductivity and TiO2 Pore-Filling. , 2014, The journal of physical chemistry letters.

[10]  C. Clavero,et al.  Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices , 2014, Nature Photonics.

[11]  Dong Ha Kim,et al.  Plasmonic dye-sensitized solar cells incorporated with Au-TiO₂ nanostructures with tailored configurations. , 2014, Nanoscale.

[12]  J. Jog,et al.  Plasmonic light harvesting of dye sensitized solar cells by Au-nanoparticle loaded TiO2 nanofibers , 2014 .

[13]  Dong Ha Kim,et al.  A study on the mechanism for the interaction of light with noble metal-metal oxide semiconductor nanostructures for various photophysical applications. , 2013, Chemical Society reviews.

[14]  W. Tremel,et al.  Plasmon-enhanced photocurrent in quasi-solid-state dye-sensitized solar cells by the inclusion of gold/silica core–shell nanoparticles in a TiO2 photoanode , 2013 .

[15]  Hong-Yan Chen,et al.  Electrospun hierarchical TiO2 nanorods with high porosity for efficient dye-sensitized solar cells. , 2013, ACS applied materials & interfaces.

[16]  Jer‐Shing Huang,et al.  The influence of shell thickness of Au@TiO2 core-shell nanoparticles on the plasmonic enhancement effect in dye-sensitized solar cells. , 2013, Nanoscale.

[17]  A. Pandikumar,et al.  Aminosilicate sol–gel stabilized N-doped TiO2–Au nanocomposite materials and their potential environmental remediation applications , 2013 .

[18]  Alagarsamy Pandikumar,et al.  TiO2-Au nanocomposite materials modified photoanode with dual sensitizer for solid-state dye-sensitized solar cell , 2013 .

[19]  Zhong‐Sheng Wang,et al.  Gold nanoparticles inlaid TiO2 photoanodes: a superior candidate for high-efficiency dye-sensitized solar cells , 2013 .

[20]  Hyungjin Kim,et al.  Effect of hydrogen plasma treatment on nano-structured TiO2 films for the enhanced performance of dye-sensitized solar cell , 2013 .

[21]  Shufang Zhang,et al.  Highly efficient dye-sensitized solar cells: progress and future challenges , 2013 .

[22]  Wenxi Guo,et al.  Optimized porous rutile TiO2 nanorod arrays for enhancing the efficiency of dye-sensitized solar cells , 2013 .

[23]  Thomas E Mallouk,et al.  Design and development of photoanodes for water-splitting dye-sensitized photoelectrochemical cells. , 2013, Chemical Society reviews.

[24]  Charles A. Schmuttenmaer,et al.  Plasmonic Enhancement of Dye-Sensitized Solar Cells Using Core− Shell−Shell Nanostructures , 2013 .

[25]  Jie Shen,et al.  Enhanced performance of dye-sensitized solar cells using gold nanoparticles modified fluorine tin oxide electrodes , 2013 .

[26]  Hui‐Ming Cheng,et al.  A red anatase TiO2 photocatalyst for solar energy conversion , 2012 .

[27]  Guozhong Cao,et al.  Applications of light scattering in dye-sensitized solar cells. , 2012, Physical chemistry chemical physics : PCCP.

[28]  Xingzhong Zhao,et al.  Synergistic effect of surface plasmon resonance and constructed hierarchical TiO2 spheres for dye-sensitized solar cells. , 2012, Nanoscale.

[29]  J. Jang,et al.  Designed architecture of multiscale porous TiO2 nanofibers for dye-sensitized solar cells photoanode. , 2012, ACS applied materials & interfaces.

[30]  Michael Grätzel,et al.  Novel nanostructures for next generation dye-sensitized solar cells , 2012 .

[31]  M. Ghaffari,et al.  Effect of Au nano-particles on TiO2 nanorod electrode in dye-sensitized solar cells , 2012 .

[32]  J. Hupp,et al.  Fast transporting ZnO-TiO2 coaxial photoanodes for dye-sensitized solar cells based on ALD-modified SiO2 aerogel frameworks. , 2012, ACS nano.

[33]  Satishchandra Ogale,et al.  TiO2–Au plasmonic nanocomposite for enhanced dye-sensitized solar cell (DSSC) performance , 2012 .

[34]  Z. Tang,et al.  Facile synthesis of Au@TiO2 core–shell hollow spheres for dye-sensitized solar cells with remarkably improved efficiency , 2012 .

[35]  P. Kamat,et al.  Know thy nano neighbor. Plasmonic versus electron charging effects of metal nanoparticles in dye-sensitized solar cells. , 2012, ACS nano.

[36]  Juan A. Anta,et al.  ZnO-Based Dye-Sensitized Solar Cells , 2012 .

[37]  G. Sahu,et al.  Core-shell Au–TiO2 nanoarchitectures formed by pulsed laser deposition for enhanced efficiency in dye sensitized solar cells , 2012 .

[38]  M. Fernández-García,et al.  Advanced nanoarchitectures for solar photocatalytic applications. , 2012, Chemical reviews.

[39]  Chen Xu,et al.  Rectangular bunched rutile TiO2 nanorod arrays grown on carbon fiber for dye-sensitized solar cells. , 2012, Journal of the American Chemical Society.

[40]  A. Pandikumar,et al.  Titanium dioxide-gold nanocomposite materials embedded in silicate sol-gel film catalyst for simultaneous photodegradation of hexavalent chromium and methylene blue. , 2012, Journal of hazardous materials.

[41]  A. Pandikumar,et al.  TiO2–Au nanocomposite materials embedded in polymer matrices and their application in the photocatalytic reduction of nitrite to ammonia , 2012 .

[42]  G. Sahu,et al.  Synthesis and application of core-shell Au–TiO2 nanowire photoanode materials for dye sensitized solar cells , 2012 .

[43]  Byungwoo Park,et al.  The effects of 100 nm-diameter Au nanoparticles on dye-sensitized solar cells , 2011 .

[44]  A. S. Nair,et al.  Anisotropic TiO2 nanomaterials in dye-sensitized solar cells. , 2011, Physical chemistry chemical physics : PCCP.

[45]  Daniel Moses,et al.  Plasmonic photosensitization of a wide band gap semiconductor: converting plasmons to charge carriers. , 2011, Nano letters.

[46]  Naomi J. Halas,et al.  Photodetection with Active Optical Antennas , 2011, Science.

[47]  Ulrich Wiesner,et al.  Plasmonic dye-sensitized solar cells using core-shell metal-insulator nanoparticles. , 2011, Nano letters.

[48]  Guozhong Cao,et al.  Nanostructured photoelectrodes for dye-sensitized solar cells , 2011 .

[49]  Harry A Atwater,et al.  Design Considerations for Plasmonic Photovoltaics , 2010, Advanced materials.

[50]  Xiaobo Chen,et al.  Semiconductor-based photocatalytic hydrogen generation. , 2010, Chemical reviews.

[51]  Timothy R. Cook,et al.  Solar energy supply and storage for the legacy and nonlegacy worlds. , 2010, Chemical reviews.

[52]  A. Nozik,et al.  Introduction to solar photon conversion. , 2010, Chemical reviews.

[53]  James R. McKone,et al.  Solar water splitting cells. , 2010, Chemical reviews.

[54]  Prashant V Kamat,et al.  Beyond photovoltaics: semiconductor nanoarchitectures for liquid-junction solar cells. , 2010, Chemical reviews.

[55]  D. Kuang,et al.  Sonochemical preparation of hierarchical ZnO hollow spheres for efficient dye-sensitized solar cells. , 2010, Chemistry.

[56]  Hiroaki Misawa,et al.  Plasmon-Assisted Photocurrent Generation from Visible to Near-Infrared Wavelength Using a Au-Nanorods/TiO2 Electrode , 2010 .

[57]  H. Atwater,et al.  Plasmonics for improved photovoltaic devices. , 2010, Nature materials.

[58]  Guozhong Cao,et al.  ZnO Nanostructures for Dye‐Sensitized Solar Cells , 2009 .

[59]  Yangxuan Xiao,et al.  TiO2‐Coated Multilayered SnO2 Hollow Microspheres for Dye‐Sensitized Solar Cells , 2009 .

[60]  Yanmin Wang,et al.  Recent research progress on polymer electrolytes for dye-sensitized solar cells , 2009 .

[61]  Ana Flávia Nogueira,et al.  New insights into dye-sensitized solar cells with polymer electrolytes , 2009 .

[62]  A. Furube,et al.  Plasmon-Induced Charge Separation and Recombination Dynamics in Gold−TiO2 Nanoparticle Systems: Dependence on TiO2 Particle Size , 2009 .

[63]  Seeram Ramakrishna,et al.  Metal Oxides for Dye-Sensitized Solar Cells , 2009 .

[64]  M. Durstock,et al.  Fabrication of highly-ordered TiO(2) nanotube arrays and their use in dye-sensitized solar cells. , 2009, Nano letters.

[65]  W. K. Chan,et al.  Dye-sensitized solar cells based on TiO2 nanotube/porous layer mixed morphology , 2008 .

[66]  H. Lee,et al.  Hollow TiO2 Hemispheres Obtained by Colloidal Templating for Application in Dye‐Sensitized Solar Cells , 2008 .

[67]  Nam-Gyu Park,et al.  Nano‐embossed Hollow Spherical TiO2 as Bifunctional Material for High‐Efficiency Dye‐Sensitized Solar Cells , 2008 .

[68]  Carl Hägglund,et al.  Enhanced charge carrier generation in dye sensitized solar cells by nanoparticle plasmons , 2008 .

[69]  J. Durrant,et al.  Influence of the TiCl4 Treatment on Nanocrystalline TiO2 Films in Dye-Sensitized Solar Cells. 2. Charge Density, Band Edge Shifts, and Quantification of Recombination Losses at Short Circuit , 2007 .

[70]  L. Peter,et al.  Dye-sensitized nanocrystalline solar cells. , 2007, Physical chemistry chemical physics : PCCP.

[71]  A. Govorov,et al.  Hybrid structures composed of photosynthetic system and metal nanoparticles: plasmon enhancement effect. , 2007, Nano letters.

[72]  P. Kamat Meeting the Clean Energy Demand: Nanostructure Architectures for Solar Energy Conversion , 2007 .

[73]  Kai Zhu,et al.  Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO2 nanotubes arrays. , 2007, Nano letters.

[74]  Vincenzo Balzani,et al.  The future of energy supply: Challenges and opportunities. , 2007, Angewandte Chemie.

[75]  Yang Tian,et al.  Size effects of gold nanaoparticles on plasmon-induced photocurrents of gold-TiO2 nanocomposites. , 2006, Physical chemistry chemical physics : PCCP.

[76]  Aleksandra Radenovic,et al.  ZnO-Al2O3 and ZnO-TiO2 core-shell nanowire dye-sensitized solar cells. , 2006, The journal of physical chemistry. B.

[77]  Bing Tan,et al.  Dye-sensitized solar cells based on anatase TiO2 nanoparticle/nanowire composites. , 2006, The journal of physical chemistry. B.

[78]  Garnett W. Bryant,et al.  Exciton-plasmon interaction and hybrid excitons in semiconductor-metal nanoparticle assemblies , 2006 .

[79]  M. El-Sayed,et al.  Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. , 2006, Chemical Society reviews.

[80]  T. Kitamura,et al.  Dye-sensitized TiO2 nanotube solar cells: fabrication and electronic characterization. , 2005, Physical chemistry chemical physics : PCCP.

[81]  H Alarcón,et al.  Dye-sensitized solar cells based on nanocrystalline TiO2 films surface treated with Al3+ ions: photovoltage and electron transport studies. , 2005, The journal of physical chemistry. B.

[82]  T. Klar,et al.  Gold nanoparticles quench fluorescence by phase induced radiative rate suppression. , 2005, Nano letters.

[83]  Valery Shklover,et al.  Nanocrystalline titanium oxide electrodes for photovoltaic applications , 2005 .

[84]  Michael Grätzel Mesoscopic solar cells for electricity and hydrogen production from sunlight , 2005 .

[85]  Mechanism of Enhanced Performance of Dye-Sensitized Solar Cell Based TiO 2 Films Treated by Titanium Tetrachloride , 2004 .

[86]  Jenny Nelson,et al.  Random walk models of charge transfer and transport in dye sensitized systems , 2004 .

[87]  A. J. Frank,et al.  Morphological and photoelectrochemical characterization of core-shell nanoparticle films for dye-sensitized solar cells: Zn-O type shell on SnO2 and TiO2 cores. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[88]  E. Wolf,et al.  Catalysis with TiO2/gold nanocomposites. Effect of metal particle size on the Fermi level equilibration. , 2004, Journal of the American Chemical Society.

[89]  E. Coronado,et al.  The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment , 2003 .

[90]  Prashant V. Kamat,et al.  Photophysical, photochemical and photocatalytic aspects of metal nanoparticles , 2002 .

[91]  A. J. Frank,et al.  Influence of Electrical Potential Distribution, Charge Transport, and Recombination on the Photopotential and Photocurrent Conversion Efficiency of Dye-Sensitized Nanocrystalline TiO2 Solar Cells: A Study by Electrical Impedance and Optical Modulation Techniques , 2000 .

[92]  M. Grätzel,et al.  A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films , 1991, Nature.

[93]  A. Heller,et al.  Photoelectrochemical hydrogen evolution and water photolyzing semiconductor suspensions: properties of platinum group metal catalyst-semiconductor contacts in air and in hydrogen , 1984 .

[94]  M. Matsumura,et al.  Photocatalytic hydrogen production from solutions of sulfite using platinized cadmium sulfide powder , 1983 .

[95]  A. Bard,et al.  Heterogeneous Photocatalytic Preparation of Supported Catalysts. Photodeposition of Platinum on TiO2 Powder and Other Substrates , 1978 .