Epitaxy: the motion picture☆

Abstract The engineering of many modern electronic devices demands control over a crystal down to the thickness of a single layer of atoms—and future demands will be even more challenging. Such control is achieved by the method of crystal growth known as epitaxy, and that makes this method the subject of intense study. More than that, recent advances are revolutionizing our knowledge of how surfaces grow. In fact, growing surfaces show a beautifully rich variety of phenomena, many of which are only now beginning to be uncovered. In the past few years many surface imaging techniques have been used to give us a close look at how crystals grow— while they are growing . The purpose of this article will be to illustrate some of the ways real surfaces grow and change as revealed by some of the latest in situ microscopic imaging technologies. It is often said that crystal growth is more of an art than a science. Here we will show that it is emphatically both.

[1]  Ross,et al.  Transition States Between Pyramids and Domes During Ge/Si Island Growth. , 1999, Science.

[2]  K. Szot,et al.  Size distribution of Ge islands grown on Si(001) , 1997 .

[3]  D. Vvedensky Atomistic modeling of epitaxial growth: comparisons between lattice models and experiment , 1996 .

[4]  L. Reimer,et al.  Scanning Electron Microscopy , 1984 .

[5]  J. Tersoff,et al.  Coarsening of Self-Assembled Ge Quantum Dots on Si(001) , 1998 .

[6]  W. Ostwald Studien über die Bildung und Umwandlung fester Körper , 1897 .

[7]  J. Villain,et al.  Physics of crystal growth , 1998 .

[8]  J. Shibata,et al.  Optics and electronics are living together , 1989, IEEE Spectrum.

[9]  M. Razeghi,et al.  The MOCVD Challenge. Volume 1: A Survey of GaInAsP — InP for Photonic and Electronic Applications. Adam Hilger, Bristol and Philadelphia, 1989, 328 Seiten, zahlreiche Abbildungen und Tabellen, 386 Quellennachweise, Preis: 65.00 £ ISBN 0‐85274‐161‐8 , 1989 .

[10]  Ellen D. Williams,et al.  Steps on surfaces: experiment and theory , 1999 .

[11]  Flemming Besenbacher,et al.  SURFACE DIFFUSION OF PT ON PT(110) : ARRHENIUS BEHAVIOR OF LONG JUMPS , 1997 .

[12]  E. Bauer,et al.  Low energy electron microscopy , 1994 .

[13]  Bernard S. Meyerson,et al.  High-speed silicon-germanium electronics , 1994 .

[14]  E. Bauer Surface electron microscopy: the first thirty years , 1994 .

[15]  M. Panish,et al.  Gas Source Molecular Beam Epitaxy: Growth and Properties of Phosphorus Containing III-V Heterostructures , 1993 .

[16]  A. Latyshev,et al.  UHV reflection electron microscopy investigation of the monoatomic steps on the silicon (111) surface at homo- and heteroepitaxial growth , 1997 .

[17]  Zangwill,et al.  Morphological instability of a terrace edge during step-flow growth. , 1990, Physical review. B, Condensed matter.

[18]  Y. Homma,et al.  In Situ Observation of Instability in Step Morphology during Epitaxy and Erosion , 2000 .

[19]  J. Tersoff,et al.  Growth kinetics of CoSi2 and Ge islands observed with in situ transmission electron microscopy , 1999 .

[20]  E. Krol Silicon-germanium , 1999 .

[21]  E. Kaxiras Review of atomistic simulations of surface diffusion and growth on semiconductors , 1996 .

[22]  Theodore I. Kamins,et al.  Deposition of three-dimensional Ge islands on Si(001) by chemical vapor deposition at atmospheric and reduced pressures , 1997 .

[23]  Yukio Saito,et al.  Statistical physics of crystal growth , 1996 .

[24]  S. Denbaars,et al.  Direct formation of quantum‐sized dots from uniform coherent islands of InGaAs on GaAs surfaces , 1993 .

[25]  J. Tersoff,et al.  In situ transmission electron microscopy observations of the formation of self‐assembled Ge islands on Si , 1998, Microscopy research and technique.

[26]  Flemming Besenbacher,et al.  Novel Mechanism for Diffusion of One-Dimensional Clusters: Pt/Pt\(110\)-\(1×2\) , 1999 .

[27]  P. Larsen,et al.  Reflection High-Energy Electron Diffraction and Reflection Electron Imaging of Surfaces , 1989 .

[28]  Y. Homma,et al.  Morphological instability of atomic steps observed on Si(111) surfaces , 2001 .

[29]  Williams,et al.  Shape transition of germanium nanocrystals on a silicon (001) surface from pyramids to domes , 1998, Science.

[30]  Y. Tsunoda,et al.  Diode lasers for mass market applications: optical recording and printing , 1994, Proc. IEEE.

[31]  E. J. Lerner Diode lasers light up disks, communications, and printers , 1998 .

[32]  Alfred Y. Cho,et al.  Molecular Beam Epitaxy , 2003 .

[33]  Masaetsu Takahashi,et al.  Structure analysis of si(111)-7×7 reconstructed surface by transmission electron diffraction , 1985 .

[34]  Riccardo Ferrando,et al.  Leapfrog Diffusion Mechanism for One-Dimensional Chains on Missing-Row Reconstructed Surfaces , 1999 .

[35]  A. Barabasi,et al.  Fractal concepts in surface growth , 1995 .

[36]  Andrew Zangwill Physics at Surfaces , 1988 .

[37]  Gerd Karl Binnig,et al.  Scanning Tunneling Microscopy , 1996 .

[38]  A. Pimpinelli,et al.  Steady-state motion of silicon islands driven by a DC current , 1999 .

[39]  J. Nørskov,et al.  Mechanisms of self-diffusion on Pt(110) , 1999 .

[40]  A. Latyshev,et al.  In situ reflection electron microscope observation of two-dimensional nucleation on Si(111) during epitaxial growth , 1996 .

[41]  B. Voigtländer,et al.  MAGIC ISLANDS IN SI/SI(111) HOMOEPITAXY , 1998 .

[42]  M. A. Herman,et al.  Molecular Beam Epitaxy: Fundamentals and Current Status , 1989 .

[43]  Ivan V. Markov,et al.  Crystal growth for beginners , 1995 .