Feature Extraction Methods for Real-Time Face Detection and Classification

We propose a complete scheme for face detection and recognition. We have used a Bayesian classifier for face detection and a nearest neighbor approach for face classification. To improve the performance of the classifier, a feature extraction algorithm based on a modified nonparametric discriminant analysis has also been implemented. The complete scheme has been tested in a real-time environment achieving encouraging results. We also show a new boosting scheme based on adapting the features to the misclassified examples, achieving also interesting results.

[1]  Paul A. Viola,et al.  Robust Real-Time Face Detection , 2001, International Journal of Computer Vision.

[2]  R. Fisher THE USE OF MULTIPLE MEASUREMENTS IN TAXONOMIC PROBLEMS , 1936 .

[3]  Aleix M. Martínez,et al.  Recognizing Imprecisely Localized, Partially Occluded, and Expression Variant Faces from a Single Sample per Class , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[4]  Shigeo Abe DrEng Pattern Classification , 2001, Springer London.

[5]  Keinosuke Fukunaga,et al.  Introduction to statistical pattern recognition (2nd ed.) , 1990 .

[6]  Narendra Ahuja,et al.  Detecting Faces in Images: A Survey , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[7]  Norbert Krüger,et al.  Face recognition by elastic bunch graph matching , 1997, Proceedings of International Conference on Image Processing.

[8]  Jordi Vitrià,et al.  A weighted non-negative matrix factorization for local representations , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[9]  Federico Girosi,et al.  Training support vector machines: an application to face detection , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[10]  Alex Pentland,et al.  Probabilistic Visual Learning for Object Representation , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[11]  Aleix M. Martinez,et al.  The AR face database , 1998 .

[12]  Joan Serrat,et al.  Evaluation of Methods for Ridge and Valley Detection , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[13]  Harry Shum,et al.  FloatBoost Learning for Classification , 2002, NIPS.

[14]  Marian Stewart Bartlett,et al.  Independent component representations for face recognition , 1998, Electronic Imaging.

[15]  Paul A. Viola,et al.  Fast and Robust Classification using Asymmetric AdaBoost and a Detector Cascade , 2001, NIPS.

[16]  Tomaso A. Poggio,et al.  Example-Based Learning for View-Based Human Face Detection , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[17]  Johan Stephen Simeon Ballot Face recognition using Hidden Markov Models , 2005 .

[18]  David J. Kriegman,et al.  Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection , 1996, ECCV.

[19]  Azriel Rosenfeld,et al.  Face recognition: A literature survey , 2003, CSUR.

[20]  Hong Yan,et al.  Comparison of face verification results on the XM2VTFS database , 2000, Proceedings 15th International Conference on Pattern Recognition. ICPR-2000.

[21]  Pavel Pudil,et al.  Introduction to Statistical Pattern Recognition , 2006 .

[22]  Josef Kittler,et al.  Pattern recognition : a statistical approach , 1982 .

[23]  Alex Pentland,et al.  View-based and modular eigenspaces for face recognition , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[24]  Timothy F. Cootes,et al.  An Automatic Face Identification System Using Flexible Appearance Models , 1994, BMVC.

[25]  Lawrence Sirovich,et al.  Application of the Karhunen-Loeve Procedure for the Characterization of Human Faces , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[26]  David G. Stork,et al.  Pattern Classification , 1973 .

[27]  Marco José Miguel Bressan Statistical Independence for classification for High Dimensional Data , 2003 .

[28]  Ioannis Pitas,et al.  Rule-based face detection in frontal views , 1997, 1997 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[29]  Paul A. Viola,et al.  Rapid object detection using a boosted cascade of simple features , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[30]  Michael C. Burl,et al.  Finding faces in cluttered scenes using random labeled graph matching , 1995, Proceedings of IEEE International Conference on Computer Vision.

[31]  H. Sebastian Seung,et al.  Learning the parts of objects by non-negative matrix factorization , 1999, Nature.

[32]  M. Turk,et al.  Eigenfaces for Recognition , 1991, Journal of Cognitive Neuroscience.

[33]  Takeo Kanade,et al.  Neural Network-Based Face Detection , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[34]  M. Bressan,et al.  Nonparametric discriminant analysis and nearest neighbor classification , 2003, Pattern Recognit. Lett..

[35]  Robert P. W. Duin,et al.  Bagging for linear classifiers , 1998, Pattern Recognit..

[36]  K. Fukunaga,et al.  Nonparametric Discriminant Analysis , 1983, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[37]  Paul A. Viola,et al.  Robust Real-time Object Detection , 2001 .

[38]  Yoav Freund,et al.  Experiments with a New Boosting Algorithm , 1996, ICML.

[39]  Rainer Lienhart,et al.  Empirical Analysis of Detection Cascades of Boosted Classifiers for Rapid Object Detection , 2003, DAGM-Symposium.

[40]  Robert P. W. Duin,et al.  Bagging, Boosting and the Random Subspace Method for Linear Classifiers , 2002, Pattern Analysis & Applications.

[41]  Zhifeng Li,et al.  Bayesian face recognition using support vector machine and face clustering , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..