MICE: multiple-peak identification, characterization, and estimation.

MICE--multiple-peak identification, characterization, and estimation--is a procedure for estimating a lower bound of the number of frequency peaks and for estimating the frequency peak parameters. The leading application is protein structure determination using nuclear magnetic resonance (NMR) experiments. NMR frequency data are multiple-peak data, where each frequency peak corresponds to two connected atoms in the three-dimensional protein structure. We analyze the NMR frequency data through a series of steps: a preliminary step for separating the signal from the background followed by identification of local maxima up to a noise-level-dependent threshold, estimation of the frequency peak parameters using an iterative algorithm, and detection of mixtures of peaks using hypothesis testing.

[1]  B. Lindsay Mixture models : theory, geometry, and applications , 1995 .

[2]  Stéphane Mallat,et al.  Singularity detection and processing with wavelets , 1992, IEEE Trans. Inf. Theory.

[3]  G. Sawitzki,et al.  Excess Mass Estimates and Tests for Multimodality , 1991 .

[4]  E. Gassiat,et al.  Testing in locally conic models, and application to mixture models , 1997 .

[5]  M Geyer,et al.  AURELIA, a program for computer-aided analysis of multidimensional NMR spectra , 1995, Journal of biomolecular NMR.

[6]  C. Loader,et al.  Simultaneous Confidence Bands for Linear Regression and Smoothing , 1994 .

[7]  John D. Kalbfleisch,et al.  Penalized minimum‐distance estimates in finite mixture models , 1996 .

[8]  M. N. Vrahatisa,et al.  From linear to nonlinear iterative methods , 2003 .

[9]  B. Garel,et al.  DETECTING A UNIVARIATE NORMAL MIXTURE WITH TWO COMPONENTS , 1996 .

[10]  T. Cai Adaptive wavelet estimation : A block thresholding and oracle inequality approach , 1999 .

[11]  M. C. Jones,et al.  Testing Monotonicity of Regression , 1998 .

[12]  Alan S. Stern,et al.  NMR Data Processing , 1996 .

[13]  David L. Donoho,et al.  De-noising by soft-thresholding , 1995, IEEE Trans. Inf. Theory.

[14]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[15]  Yazhen Wang Jump and sharp cusp detection by wavelets , 1995 .

[16]  K Wüthrich,et al.  NMR - this other method for protein and nucleic acid structure determination. , 1995, Acta crystallographica. Section D, Biological crystallography.

[17]  P. Sen,et al.  On the asymptotic performance of the log likelihood ratio statistic for the mixture model and related results , 1984 .

[18]  M. Billeter,et al.  Automated peak picking and peak integration in macromolecular NMR spectra using AUTOPSY. , 1998, Journal of magnetic resonance.

[19]  A. F. Smith,et al.  Statistical analysis of finite mixture distributions , 1986 .

[20]  Marc Raimondo,et al.  A peaks over threshold model for change-point detection by wavelets , 2004 .

[21]  J. Hartigan,et al.  The Dip Test of Unimodality , 1985 .

[22]  Geoffrey J. McLachlan,et al.  A Note on the Aitkin‐Rubin Approach to Hypothesis Testing in Mixture Models , 1987 .

[23]  V. Spokoiny,et al.  Multiscale testing of qualitative hypotheses , 2001 .

[24]  I. Johnstone,et al.  Adapting to Unknown Smoothness via Wavelet Shrinkage , 1995 .

[25]  F. T. Wright,et al.  Order restricted statistical inference , 1988 .

[26]  Xiaotong Shen,et al.  Nonparametric Hypothesis Testing for a Spatial Signal , 2002 .

[27]  Mohamed Lemdani,et al.  Likelihood ratio tests in contamination models , 1999 .

[28]  Larry Wasserman,et al.  False Discovery Rates for Random Fields , 2003 .

[29]  J. Kalbfleisch,et al.  A modified likelihood ratio test for homogeneity in finite mixture models , 2001 .

[30]  W. Gronwald,et al.  Automated structure determination of proteins by NMR spectroscopy , 2004 .

[31]  I. Johnstone,et al.  Wavelet Threshold Estimators for Data with Correlated Noise , 1997 .

[32]  K. Worsley Estimating the number of peaks in a random field using the Hadwiger characteristic of excursion sets, with applications to medical images , 1995 .

[33]  R. Tibshirani,et al.  Linear Smoothers and Additive Models , 1989 .

[34]  Srinivasan Umesh,et al.  Estimation of parameters of exponentially damped sinusoids using fast maximum likelihood estimation with application to NMR spectroscopy data , 1996, IEEE Trans. Signal Process..

[35]  I. Verdinelli,et al.  False Discovery Control for Random Fields , 2004 .

[36]  Guenther Walther,et al.  Multiscale maximum likelihood analysis of a semiparametric model , 2001 .

[37]  B. Silverman,et al.  Incorporating Information on Neighboring Coefficients Into Wavelet Estimation , 2001 .

[38]  K. Roeder A Graphical Technique for Determining the Number of Components in a Mixture of Normals , 1994 .

[39]  Subhashis Ghosal,et al.  TESTING MONOTONICITY OF REGRESSION By , 1998 .

[40]  Hans Robert Kalbitzer,et al.  Automated peak integration in multidimensional NMR spectra by an optimized iterative segmentation procedure , 1995 .

[41]  A. F. Smith,et al.  Statistical analysis of finite mixture distributions , 1986 .

[42]  T. Tony Cai,et al.  ON BLOCK THRESHOLDING IN WAVELET REGRESSION: ADAPTIVITY, BLOCK SIZE, AND THRESHOLD LEVEL , 2002 .

[43]  L W Jelinski,et al.  Nuclear magnetic resonance spectroscopy. , 1995, Academic radiology.

[44]  A. J. Connolly,et al.  A new source detection algorithm using FDR , 2001 .

[45]  Subhashis Ghosal,et al.  Testing monotonicity of a regression function. , 2000 .

[46]  K. Worsley,et al.  The geometry of correlation fields with an application to functional connectivity of the brain , 1999 .

[47]  D. Rubin,et al.  Estimation and Hypothesis Testing in Finite Mixture Models , 1985 .