Genetic defects in β-spectrin and tau sensitize C. elegans axons to movement-induced damage via torque-tension coupling

Our bodies are in constant motion and so are the neurons that invade each tissue. Motion-induced neuron deformation and damage are associated with several neurodegenerative conditions. Here, we investigated the question of how the neuronal cytoskeleton protects axons and dendrites from mechanical stress, exploiting mutations in UNC-70 β-spectrin, PTL-1 tau/MAP2-like and MEC-7 β-tubulin proteins in Caenorhabditis elegans. We found that mechanical stress induces supercoils and plectonemes in the sensory axons of spectrin and tau double mutants. Biophysical measurements, super-resolution, and electron microscopy, as well as numerical simulations of neurons as discrete, elastic rods provide evidence that a balance of torque, tension, and elasticity stabilizes neurons against mechanical deformation. We conclude that the spectrin and microtubule cytoskeletons work in combination to protect axons and dendrites from mechanical stress and propose that defects in β-spectrin and tau may sensitize neurons to damage. DOI: http://dx.doi.org/10.7554/eLife.20172.001

[1]  P. Sternberg,et al.  The tubulin repertoire of Caenorhabditis elegans sensory neurons and its context‑dependent role in process outgrowth , 2016, Molecular biology of the cell.

[2]  Jiang He,et al.  Prevalent presence of periodic actin–spectrin-based membrane skeleton in a broad range of neuronal cell types and animal species , 2016, Proceedings of the National Academy of Sciences.

[3]  Stefan W. Hell,et al.  Subcortical cytoskeleton periodicity throughout the nervous system , 2016, Scientific Reports.

[4]  B. Dubois,et al.  Mechanical stress models of Alzheimer's disease pathology , 2016, Alzheimer's & Dementia.

[5]  Edward J. Rapp,et al.  Is phosphorylated tau unique to chronic traumatic encephalopathy? Phosphorylated tau in epileptic brain and chronic traumatic encephalopathy , 2016, Brain Research.

[6]  Myung Chul Choi,et al.  Direct force measurements reveal that protein Tau confers short-range attractions and isoform-dependent steric stabilization to microtubules , 2015, Proceedings of the National Academy of Sciences.

[7]  D. Dickinson,et al.  Streamlined Genome Engineering with a Self-Excising Drug Selection Cassette , 2015, Genetics.

[8]  L. Papa,et al.  Systematic review of clinical studies examining biomarkers of brain injury in athletes after sports-related concussion. , 2015, Journal of neurotrauma.

[9]  Shai Shaham,et al.  FBN-1, a fibrillin-related protein, is required for resistance of the epidermis to mechanical deformation during C. elegans embryogenesis , 2015, eLife.

[10]  Stefan W Hell,et al.  STED nanoscopy reveals the ubiquity of subcortical cytoskeleton periodicity in living neurons. , 2015, Cell reports.

[11]  Michael Krieg,et al.  Mechanical systems biology of C. elegans touch sensation , 2015, BioEssays : news and reviews in molecular, cellular and developmental biology.

[12]  G. Grason Colloquium: Geometry and optimal packing of twisted columns and filaments , 2014, 1410.7321.

[13]  Manuel Théry,et al.  Measurement of cell traction forces with ImageJ. , 2015, Methods in cell biology.

[14]  Pedro M. Reis,et al.  Pattern morphology in the elastic sewing machine , 2014 .

[15]  Jiang He,et al.  Developmental mechanism of the periodic membrane skeleton in axons , 2014, eLife.

[16]  Jiun-Min Hsu,et al.  Genetic Analysis of a Novel Tubulin Mutation That Redirects Synaptic Vesicle Targeting and Causes Neurite Degeneration in C. elegans , 2014, PLoS genetics.

[17]  Eitan Grinspun,et al.  Coiling of elastic rods on rigid substrates , 2014, Proceedings of the National Academy of Sciences.

[18]  F. Rico,et al.  Cannabinoid-induced actomyosin contractility shapes neuronal morphology and growth , 2014, eLife.

[19]  M. Kollmar,et al.  Six Subgroups and Extensive Recent Duplications Characterize the Evolution of the Eukaryotic Tubulin Protein Family , 2014, Genome biology and evolution.

[20]  G. Grason,et al.  Geometry of flexible filament cohesion: better contact through twist? , 2014, The Journal of chemical physics.

[21]  M. Goodman,et al.  PTRN-1, a microtubule minus end-binding CAMSAP homolog, promotes microtubule function in Caenorhabditis elegans neurons , 2014, eLife.

[22]  Michael Krieg,et al.  Mechanical Control of the Sense of Touch by β Spectrin , 2014, Nature Cell Biology.

[23]  M. Goodman,et al.  Phospholipids that contain polyunsaturated fatty acids enhance neuronal cell mechanics and touch sensation. , 2014, Cell reports.

[24]  M. Chalfie,et al.  Assaying mechanosensation. , 2014, WormBook : the online review of C. elegans biology.

[25]  Riyi Shi,et al.  Contribution of cytoskeletal elements to the axonal mechanical properties , 2013, Journal of biological engineering.

[26]  Bob Goldstein,et al.  Engineering the Caenorhabditis elegans Genome Using Cas9-Triggered Homologous Recombination , 2013, Nature Methods.

[27]  R. Greiner,et al.  Determination of the optimal tubulin isotype target as a method for the development of individualized cancer chemotherapy , 2013, Theoretical Biology and Medical Modelling.

[28]  Michael W. Davidson,et al.  A bright monomeric green fluorescent protein derived from Branchiostoma lanceolatum , 2013, Nature Methods.

[29]  X. Zhuang,et al.  Actin, Spectrin, and Associated Proteins Form a Periodic Cytoskeletal Structure in Axons , 2013, Science.

[30]  Christopher V. Gabel,et al.  Long-Term Imaging of Caenorhabditis elegans Using Nanoparticle-Mediated Immobilization , 2013, PloS one.

[31]  E. Mandelkow,et al.  The fuzzy coat of pathological human Tau fibrils is a two-layered polyelectrolyte brush , 2012, Proceedings of the National Academy of Sciences.

[32]  William J. Tyler,et al.  The mechanobiology of brain function , 2012, Nature Reviews Neuroscience.

[33]  M. Goodman,et al.  The doublecortin-related gene zyg-8 is a microtubule organizer in Caenorhabditis elegans neurons , 2012, Journal of Cell Science.

[34]  Tim Scholz,et al.  Tau Protein Diffuses along the Microtubule Lattice* , 2012, The Journal of Biological Chemistry.

[35]  Anthony A. Hyman,et al.  A Genome-Scale Resource for In Vivo Tag-Based Protein Function Exploration in C. elegans , 2012, Cell.

[36]  Peter Grütter,et al.  Atomic force microscopy reveals important differences in axonal resistance to injury. , 2012, Biophysical journal.

[37]  Johannes E. Schindelin,et al.  Fiji: an open-source platform for biological-image analysis , 2012, Nature Methods.

[38]  D. Hall,et al.  Genetically Separable Functions of the MEC-17 Tubulin Acetyltransferase Affect Microtubule Organization , 2012, Current Biology.

[39]  Johannes E. Schindelin,et al.  TrakEM2 Software for Neural Circuit Reconstruction , 2012, PloS one.

[40]  M. Goodman,et al.  Posttranslational Acetylation of α-Tubulin Constrains Protofilament Number in Native Microtubules , 2012, Current Biology.

[41]  A. Jeromin,et al.  Age-Related Intraneuronal Elevation of αII-Spectrin Breakdown Product SBDP120 in Rodent Forebrain Accelerates in 3×Tg-AD Mice , 2012, PloS one.

[42]  M. Wedel A Monument of Inefficiency: The Presumed Course of the Recurrent Laryngeal Nerve in Sauropod Dinosaurs , 2012 .

[43]  Steven P Broglio,et al.  Cumulative head impact burden in high school football. , 2011, Journal of neurotrauma.

[44]  E. Vouga,et al.  Discrete viscous threads , 2010, ACM Trans. Graph..

[45]  P. D. De Deyn,et al.  Alzheimer's disease: cerebral glaucoma? , 2010, Medical hypotheses.

[46]  Shawn P. Reese,et al.  Micromechanical models of helical superstructures in ligament and tendon fibers predict large Poisson's ratios. , 2010, Journal of biomechanics.

[47]  Douglas H. Smith,et al.  Mechanical breaking of microtubules in axons during dynamic stretch injury underlies delayed elasticity, microtubule disassembly, and axon degeneration , 2010, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[48]  R. Letón,et al.  Tumoral and tissue‐specific expression of the major human β‐tubulin isotypes , 2010, Cytoskeleton.

[49]  Bruno Lévy,et al.  Geometry-aware direction field processing , 2009, TOGS.

[50]  A. Baines Evolution of spectrin function in cytoskeletal and membrane networks. , 2009, Biochemical Society transactions.

[51]  Olivier A. Bauchau,et al.  Euler-Bernoulli beam theory , 2009 .

[52]  Ang Yan Sheng,et al.  Discrete Differential Geometry , 2017 .

[53]  M. Goodman,et al.  The C. elegans EMAP-like protein, ELP-1 is required for touch sensation and associates with microtubules and adhesion complexes , 2008, BMC Developmental Biology.

[54]  K. Raley-Susman,et al.  The invertebrate microtubule-associated protein PTL-1 functions in mechanosensation and development in Caenorhabditis elegans , 2008, Development Genes and Evolution.

[55]  Eitan Grinspun,et al.  Discrete elastic rods , 2008, ACM Trans. Graph..

[56]  S. Seiffert,et al.  Systematic evaluation of FRAP experiments performed in a confocal laser scanning microscope – Part II: Multiple diffusion processes , 2008, Journal of microscopy.

[57]  Plectoneme formation in twisted fluctuating rods , 2008 .

[58]  John W. Sedat,et al.  A Presynaptic Giant Ankyrin Stabilizes the NMJ through Regulation of Presynaptic Microtubules and Transsynaptic Cell Adhesion , 2008, Neuron.

[59]  Bobby Bodenheimer,et al.  Synthesis and evaluation of linear motion transitions , 2008, TOGS.

[60]  Erwin Frey,et al.  Cytoskeletal bundle mechanics. , 2007, Biophysical journal.

[61]  Miriam B Goodman,et al.  Nanoscale Organization of the MEC-4 DEG/ENaC Sensory Mechanotransduction Channel in Caenorhabditis elegans Touch Receptor Neurons , 2007, The Journal of Neuroscience.

[62]  E. Mandelkow,et al.  Swimming against the Tide: Mobility of the Microtubule-Associated Protein Tau in Neurons , 2007, The Journal of Neuroscience.

[63]  Gregory M Grason,et al.  Chirality and equilibrium biopolymer bundles. , 2007, Physical review letters.

[64]  Jay X. Tang,et al.  Polymerization force driven buckling of microtubule bundles determines the wavelength of patterns formed in tubulin solutions. , 2007, Physical review letters.

[65]  R. K. Herman Faculty Opinions recommendation of Axons break in animals lacking beta-spectrin. , 2007 .

[66]  H. Flyvbjerg,et al.  Why is the microtubule lattice helical? , 2007, Biology of the cell.

[67]  Erik M. Jorgensen,et al.  Axons break in animals lacking β-spectrin , 2007, The Journal of cell biology.

[68]  C. Autermann,et al.  崩壊Bs0→Ds(*)Ds(*) , 2007 .

[69]  R. Morrison,et al.  Primary culture of Caenorhabditis elegans developing embryo cells for electrophysiological, cell biological and molecular studies , 2007, Nature Protocols.

[70]  Eitan Grinspun,et al.  Computing discrete shape operators on general meshes , 2006, Comput. Graph. Forum.

[71]  L. Tjeng,et al.  Orbitally driven spin-singlet dimerization in S=1 La4Ru2O10. , 2006, Physical review letters.

[72]  Donald E. Ingber,et al.  Jcb: Article Introduction , 2002 .

[73]  Theresa Stiernagle Maintenance of C. elegans. , 2006, WormBook : the online review of C. elegans biology.

[74]  J. Joanny,et al.  Osmotically driven shape transformations in axons. , 2006, Physical review letters.

[75]  N. Perkins,et al.  Nonlinear dynamics and loop formation in Kirchhoff rods with implications to the mechanics of DNA and cables , 2005 .

[76]  J C Fiala,et al.  Reconstruct: a free editor for serial section microscopy , 2005, Journal of microscopy.

[77]  M. Chalfie,et al.  The MEC-4 DEG/ENaC channel of Caenorhabditis elegans touch receptor neurons transduces mechanical signals , 2005, Nature Neuroscience.

[78]  D. Needleman,et al.  Higher-order assembly of microtubules by counterions: from hexagonal bundles to living necklaces. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[79]  Michael Gaetz,et al.  The neurophysiology of brain injury , 2004, Clinical Neurophysiology.

[80]  P. Walther,et al.  Freeze substitution of high‐pressure frozen samples: the visibility of biological membranes is improved when the substitution medium contains water , 2002, Journal of microscopy.

[81]  S. Halpain,et al.  MAP2 and tau bind longitudinally along the outer ridges of microtubule protofilaments , 2002, The Journal of cell biology.

[82]  David M. Miller,et al.  A Primary Culture System for Functional Analysis of C. elegans Neurons and Muscle Cells , 2002, Neuron.

[83]  E. Hedgecock,et al.  Hemicentin, a conserved extracellular member of the immunoglobulin superfamily, organizes epithelial and other cell attachments into oriented line-shaped junctions. , 2001, Development.

[84]  E. Jorgensen,et al.  Mutations in β-Spectrin Disrupt Axon Outgrowth and Sarcomere Structure , 2000, The Journal of cell biology.

[85]  J.M.T. Thompson,et al.  Helical and Localised Buckling in Twisted Rods: A Unified Analysis of the Symmetric Case , 2000 .

[86]  D. Boal The Cell's Biological Rods and Ropes , 1999 .

[87]  R. Bar-Ziv,et al.  Pearling in cells: a clue to understanding cell shape. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[88]  Alain Goriely,et al.  Towards a classification of Euler–Kirchhoff filaments , 1999 .

[89]  J. Culotti,et al.  MEC-12, an alpha-tubulin required for touch sensitivity in C. elegans. , 1999, Journal of cell science.

[90]  Alain Goriely,et al.  Nonlinear dynamics of filaments. IV Spontaneous looping of twisted elastic rods , 1998, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[91]  M. Holley,et al.  Mechanics of microtubule bundles in pillar cells from the inner ear. , 1997, Biophysical journal.

[92]  Alain Goriely,et al.  The Nonlinear Dynamics of Filaments , 1997 .

[93]  J. Ahringer,et al.  PTL-1, a microtubule-associated protein with tau-like repeats from the nematode Caenorhabditis elegans. , 1996, Journal of cell science.

[94]  J R Kremer,et al.  Computer visualization of three-dimensional image data using IMOD. , 1996, Journal of structural biology.

[95]  Russell C. Hibbeler,et al.  Structural Analysis , 1994 .

[96]  J. Bechhoefer,et al.  Calibration of atomic‐force microscope tips , 1993 .

[97]  J. Howard,et al.  Flexural rigidity of microtubules and actin filaments measured from thermal fluctuations in shape , 1993, The Journal of cell biology.

[98]  J. Coyne,et al.  Analysis of the formation and elimination of loops in twisted cable , 1990 .

[99]  A. Coulson,et al.  mec-7 is a beta-tubulin gene required for the production of 15-protofilament microtubules in Caenorhabditis elegans. , 1989, Genes & development.

[100]  H. Ponstingl,et al.  Common and distinct tubulin binding sites for microtubule-associated proteins. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[101]  S. Brenner,et al.  The neural circuit for touch sensitivity in Caenorhabditis elegans , 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[102]  M. Chalfie,et al.  Structural and functional diversity in the neuronal microtubules of Caenorhabditis elegans , 1982, The Journal of cell biology.

[103]  M. Chalfie,et al.  Organization of neuronal microtubules in the nematode Caenorhabditis elegans , 1979, The Journal of cell biology.