Test of the gravitational redshift with stable clocks in eccentric orbits: application to Galileo satellites 5 and 6

The Einstein Equivalence Principle (EEP) is one of the foundations of the theory of General Relativity and several alternative theories of gravitation predict violations of the EEP. Experimental constraints on this fundamental principle of nature are therefore of paramount importance. The EEP can be split in three sub-principles: the Universality of Free Fall (UFF), the Local Lorentz Invariance (LLI) and the Local Position Invariance (LPI). In this paper we propose to use stable clocks in eccentric orbits to perform a test of the gravitational redshift, a consequence of the LPI. The best test to date was performed with the Gravity Probe A (GP-A) experiment in 1976 with an uncertainty of $1.4\times10^{-4}$. Our proposal considers the opportunity of using Galileo satellites 5 and 6 to improve on the GP-A test uncertainty. We show that considering realistic noise and systematic effects, and thanks to a highly eccentric orbit, it is possible to improve on the GP-A limit to an uncertainty around $(3-4)\times 10^{-5}$ after one year of integration of Galileo 5 and 6 data.

[1]  O. Montenbruck,et al.  Enhanced solar radiation pressure modeling for Galileo satellites , 2015, Journal of Geodesy.

[2]  M. W. Levine,et al.  A test of the equivalence principle using a space-borne clock , 1979 .

[3]  O. Minazzoli,et al.  Breaking of the equivalence principle in the electromagnetic sector and its cosmological signatures , 2014, 1406.6187.

[4]  Michael E. Tobar,et al.  Improved Tests of Local Position Invariance Using Rb-87 and Cs-133 Fountains , 2012, 1205.4235.

[5]  B. Iyer,et al.  Erratum: Parameter estimation of inspiralling compact binaries using 3.5 post-Newtonian gravitational wave phasing: The nonspinning case [Phys. Rev. D 71, 084008 (2005)] , 2005 .

[6]  D. Svehla A new test of general theory of relativity by probing the gravitational redshift using H-maser onboard the GALILEO GIOVE-B satellite , 2010 .

[7]  A. Izenman Introduction to Random Processes, With Applications to Signals and Systems , 1987 .

[8]  D. Wineland,et al.  Frequency Ratio of Al+ and Hg+ Single-Ion Optical Clocks; Metrology at the 17th Decimal Place , 2008, Science.

[9]  William A. Gardner,et al.  Introduction to random processes with applications to signals and systems: Reviewer: D. W. Clarke Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PK, England , 1988, Autom..

[10]  Peter Steigenberger,et al.  Apparent clock variations of the Block IIF-1 (SVN62) GPS satellite , 2012, GPS Solutions.

[11]  Clifford M. Will,et al.  The Confrontation between General Relativity and Experiment , 2001, Living reviews in relativity.

[12]  Clifford M. Will,et al.  Theory and Experiment in Gravitational Physics: Frontmatter , 1993 .

[13]  Gerard Petit,et al.  SATELLITE TEST OF SPECIAL RELATIVITY USING THE GLOBAL POSITIONING SYSTEM , 1997 .

[14]  Luigi Cacciapuoti,et al.  Space clocks and fundamental tests: The ACES experiment , 2009 .

[15]  Gravitational redshift experiment with the space radio telescope RadioAstron , 2015, 1503.03641.

[16]  Radford M. Neal Slice Sampling , 2003, The Annals of Statistics.

[17]  O. Minazzoli,et al.  Intrinsic Solar System decoupling of a scalar-tensor theory with a universal coupling between the scalar field and the matter Lagrangian , 2013, 1308.2770.

[18]  Chris Rizos,et al.  The International GNSS Service in a changing landscape of Global Navigation Satellite Systems , 2009 .

[19]  Adrian Jäggi,et al.  The CODE MGEX Orbit and Clock Solution , 2015 .

[20]  Jean-Philippe Uzan,et al.  Varying Constants, Gravitation and Cosmology , 2010, Living reviews in relativity.

[21]  H. Bock,et al.  High-rate GPS clock corrections from CODE: support of 1 Hz applications , 2009 .

[22]  S Schlamminger,et al.  Test of the equivalence principle using a rotating torsion balance. , 2007, Physical review letters.

[23]  Peter Steigenberger,et al.  Center for Orbit Determination in Europe (CODE) , 2014 .

[24]  T. Damour Theoretical aspects of the equivalence principle , 2012, 1202.6311.

[25]  S. Capozziello,et al.  Quantum tests of the Einstein Equivalence Principle with the STE–QUEST space mission , 2014, 1404.4307.

[26]  Parameter estimation of inspiralling compact binaries using 3.5 post-Newtonian gravitational wave phasing : The nonspinning case , 2005 .

[27]  S. Schlamminger,et al.  Torsion balance experiments: A low-energy frontier of particle physics , 2009 .

[28]  S. Walker Invited comment on the paper "Slice Sampling" by Radford Neal , 2003 .

[29]  T. Damour Equivalence Principle and Clocks , 1999, gr-qc/9904032.

[30]  A. Polyakov,et al.  The string dilation and a least coupling principle , 1994, hep-th/9401069.

[31]  Pascal Rochat,et al.  Atomic Clocks and Timing Systems in Global Navigation Satellite Systems , 2012 .

[32]  Slava G. Turyshev,et al.  LUNAR LASER RANGING TESTS OF THE EQUIVALENCE PRINCIPLE WITH THE EARTH AND MOON , 2005 .

[33]  P. Tortora,et al.  A test of general relativity using radio links with the Cassini spacecraft , 2003, Nature.

[34]  W. Folkner,et al.  Constraints on modified Newtonian dynamics theories from radio tracking data of the Cassini spacecraft , 2014, 1402.6950.

[35]  S. Reynaud,et al.  Radioscience simulations in general relativity and in alternative theories of gravity , 2011, 1105.5927.

[36]  S. Lambert,et al.  Determination of the relativistic parameter gamma using very long baseline interferometry , 2009, 0903.1615.

[37]  Agnes Fienga,et al.  Use of MESSENGER radioscience data to improve planetary ephemeris and to test general relativity , 2013, 1306.5569.

[38]  Clifford M. Will,et al.  Theory and Experiment in Gravitational Physics , 1982 .

[39]  O. Montenbruck,et al.  Getting a Grip on Multi-GNSS: The International GNSS Service MGEX Campaign , 2013 .

[40]  R. Decher,et al.  Test of relativistic gravitation with a space-borne hydrogen maser , 1980 .

[41]  Neil Ashby,et al.  Relativity in the Global Positioning System , 2003, Living reviews in relativity.

[42]  T. Damour,et al.  Equivalence Principle Violations and Couplings of a Light Dilaton , 2010, 1007.2792.

[43]  Robert F. C. Vessot Clocks and spaceborne tests of relativistic gravitation , 1989 .

[44]  E. V. Pitjeva,et al.  Development of planetary ephemerides EPM and their applications , 2014 .

[45]  A. Fienga,et al.  Numerical estimation of the sensitivity of INPOP planetary ephemerides to general relativity parameters , 2015 .

[46]  D. Batens,et al.  Theory and Experiment , 1988 .

[47]  T. Hänsch,et al.  Test of time dilation using stored Li+ ions as clocks at relativistic speed. , 2014, Physical review letters.