Performance and complexity of block turbo decoder circuits

This paper presents the latest results on block turbo codes and also an analysis of the possible implementations of a block turbo decoder circuit. Simulation results show that the SNR (signal to noise ratio) required to achieve a BER (Bit Error Rate) of 10/sup -5/ with block turbo codes is 2.5/spl plusmn/0.2 dB from their Shannon limit for any code rate. We have identified three different solutions for implementing the block turbo decoder circuit. After discussing the advantages and disadvantages of the different solutions, we give the results of the degradation of the performance of the block turbo decoder circuit due to data quantization. Finally, in our conclusion, we discuss how to reduce the complexity of the algorithm for its implementation.

[1]  Sudhakar M. Reddy,et al.  Random error and burst correction by iterated codes , 1972, IEEE Trans. Inf. Theory.

[2]  F. MacWilliams,et al.  The Theory of Error-Correcting Codes , 1977 .

[3]  Sudhakar M. Reddy On decoding iterated codes , 1970, IEEE Trans. Inf. Theory.

[4]  Ramesh Pyndiah,et al.  Architecture et conception d'un circuit turbo-decodeur de codes produits , 1995 .

[5]  Alain Glavieux,et al.  Turbo-codes : Principe et applications , 1995 .

[6]  A. Glavieux,et al.  Near Shannon limit error-correcting coding and decoding: Turbo-codes. 1 , 1993, Proceedings of ICC '93 - IEEE International Conference on Communications.

[7]  Ramesh Pyndiah,et al.  Near optimum decoding of product codes , 1994, 1994 IEEE GLOBECOM. Communications: The Global Bridge.

[8]  Claude Berrou,et al.  A low complexity soft-output Viterbi decoder architecture , 1993, Proceedings of ICC '93 - IEEE International Conference on Communications.

[9]  Ramesh Pyndiah,et al.  Algorithme turbo : Un nouveau procédé de décodage pour les codes produits , 1995 .