Large scale optimization strategies for zone configuration of simulated moving beds

Simulated moving bed (SMB) processes are widely used in sugar, petrochemical, and pharmaceutical industries. However, systematic optimization of SMB, especially finding the optimal zone configuration including the standard and modified non-standard configurations, is still a challenging problem. This paper proposes a simultaneous, fully discretized approach with an SMB superstructure using an interior-point solver. To find the optimal structure, two superstructures are analyzed to develop standard and non-standard configurations. In case studies of the linear and bi-Langmuir isotherms, optimal zone configurations have been successfully obtained without introducing discrete variables. Finally, the effect of the number of columns on the optimal throughput is investigated.

[1]  F. Zuiderweg,et al.  Longitudinal diffusion and resistance to mass transfer as causes of nonideality in chromatography , 1995 .

[2]  D. Ruthven,et al.  Counter-current and simulated counter-current adsorption separation processes , 1989 .

[3]  G. Dünnebier,et al.  Modelling and simulation of nonlinear chromatographic separation processes: a comparison of different modelling approaches , 2000 .

[4]  Lorenz T. Biegler,et al.  Chapter 1 Large-scale optimization strategies for zone configuration of simulated moving beds , 2006 .

[5]  Arthur E. Bryson,et al.  Applied Optimal Control , 1969 .

[6]  L. Biegler,et al.  Optimization strategies for simulated moving bed and PowerFeed processes , 2006 .

[7]  L. Biegler,et al.  Large scale nonlinear optimization for asymmetric operation and design of Simulated Moving Beds. , 2006, Journal of chromatography. A.

[8]  G. Dünnebier,et al.  Optimal Design and Operation of Simulated Moving Bed Chromatographic Reactors , 2000 .

[9]  Lorenz T. Biegler,et al.  Simulation and optimization of pressure-swing adsorption systems for air separation , 2003 .

[10]  K. Hashimoto,et al.  MODELS FOR THE SEPARATION OF GLUCOSE/FRUCTOSE MIXTURE USING A SIMULATED MOVING-BED ADSORBER , 1983 .

[11]  Lorenz T. Biegler,et al.  Optimization of a Pressure-Swing Adsorption Process Using Zeolite 13X for CO2 Sequestration , 2003 .

[12]  Tapio Westerlund,et al.  Comparisons of solving a chromatographic separation problem using MINLP methods , 2004, Comput. Chem. Eng..

[13]  S. Engell,et al.  Optimal Operation of Continuous Chromatographic Processes: Mathematical Optimization of the VARICOL Process , 2002 .

[14]  G. Guiochon,et al.  Comparison of the various kinetic models of non-linear chromatography , 1992 .

[15]  Lorenz T. Biegler,et al.  On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming , 2006, Math. Program..

[16]  K. Hidajat,et al.  Comparative study of flow schemes for a simulated countercurrent adsorption separation process , 1992 .

[17]  Luís S. Pais,et al.  Cyclic steady state of simulated moving bed processes for enantiomers separation , 2003 .

[18]  L. Biegler,et al.  Nonlinear Programming Superstructure for Optimal Dynamic Operations of Simulated Moving Bed Processes , 2006 .

[19]  Brian W. Kernighan,et al.  AMPL: A Modeling Language for Mathematical Programming , 1993 .

[20]  Ignacio E. Grossmann,et al.  Optimal feed locations and number of trays for distillation columns with multiple feeds , 1993 .

[21]  A. K. Ray,et al.  Multiobjective optimization of SMB and varicol process for chiral separation , 2002 .

[22]  S. Nilchan,et al.  On the Optimisation of Periodic Adsorption Processes , 1998 .