Boosting-Based Visual Tracking Using Structural Local Sparse Descriptors

This paper develops an online algorithm based on sparse representation and boosting for robust object tracking. Local descriptors of a target object are represented by pooling some sparse codes of its local patches, and an Adaboost classifier is learned using the local descriptors to discriminate target from background. Meanwhile, the proposed algorithm assigns a weight value, calculated with the generative model, to each candidate object to adjust the classification result. In addition, a template update strategy, based on incremental principal component analysis and occlusion handing scheme, is presented to capture the appearance change of the target and to alleviate the visual drift problem. Comparison with the state-of-the-art trackers on the comprehensive benchmark shows effectiveness of the proposed method.

[1]  Rui Caseiro,et al.  Exploiting the Circulant Structure of Tracking-by-Detection with Kernels , 2012, ECCV.

[2]  Shai Avidan,et al.  Locally Orderless Tracking , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[3]  Haibin Ling,et al.  Robust Visual Tracking using 1 Minimization , 2009 .

[4]  Qing Wang,et al.  Online discriminative object tracking with local sparse representation , 2012, 2012 IEEE Workshop on the Applications of Computer Vision (WACV).

[5]  Gérard G. Medioni,et al.  Context tracker: Exploring supporters and distracters in unconstrained environments , 2011, CVPR 2011.

[6]  Ming-Hsuan Yang,et al.  Robust Object Tracking with Online Multiple Instance Learning , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[7]  Hanqing Lu,et al.  A robust boosting tracker with minimum error bound in a co-training framework , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[8]  Ming-Hsuan Yang,et al.  Incremental Learning for Robust Visual Tracking , 2008, International Journal of Computer Vision.

[9]  Yanning Zhang,et al.  Part-Based Visual Tracking with Online Latent Structural Learning , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[10]  Haibin Ling,et al.  Robust visual tracking using ℓ1 minimization , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[11]  Yi Wu,et al.  Online Object Tracking: A Benchmark , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[12]  Horst Bischof,et al.  Real-Time Tracking via On-line Boosting , 2006, BMVC.

[13]  Huchuan Lu,et al.  Least Soft-Threshold Squares Tracking , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[14]  Zhongfei Zhang,et al.  A survey of appearance models in visual object tracking , 2013, ACM Trans. Intell. Syst. Technol..

[15]  Ming-Hsuan Yang,et al.  Least Soft-thresold Squares Tracking , 2013 .

[16]  Huchuan Lu,et al.  Robust object tracking via sparsity-based collaborative model , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[17]  Junzhou Huang,et al.  Robust tracking using local sparse appearance model and K-selection , 2011, CVPR 2011.

[18]  Junseok Kwon,et al.  Tracking by Sampling Trackers , 2011, 2011 International Conference on Computer Vision.

[19]  Tobias Bjerregaard,et al.  A survey of research and practices of Network-on-chip , 2006, CSUR.

[20]  Jingdong Wang,et al.  Online Robust Non-negative Dictionary Learning for Visual Tracking , 2013, 2013 IEEE International Conference on Computer Vision.

[21]  Narendra Ahuja,et al.  Robust visual tracking via multi-task sparse learning , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[22]  Junseok Kwon,et al.  Visual tracking decomposition , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[23]  Lei Zhang,et al.  Real-Time Compressive Tracking , 2012, ECCV.

[24]  Jiri Matas,et al.  P-N learning: Bootstrapping binary classifiers by structural constraints , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[25]  Thang Ba Co-training Framework of Generative and Discriminative Trackers with Partial Occlusion Handling , 2010 .

[26]  Laura Sevilla-Lara,et al.  Distribution fields for tracking , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[27]  Huchuan Lu,et al.  Visual tracking via adaptive structural local sparse appearance model , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.