Physiological Evidence for Two Visual Subsystems

Many studies, including some in this volume, describe two distinct types of higher functions in the visual system. One visual function is concerned primarily with evaluation using information about shape, color and pattern to identify or categorize objects. The other function is more involved with spatial considerations, making use of visual information to determine the position movements and spatial relationships among objects. The notion that the visual system performs two distinguishable types of higher functions is well established, and many pairs of terms have been applied in describing this dichotomy: evaluating/orienting, what/where, focal/ambient, examining/noticing, figural/spatial, foveal/ambient, and object/spatial. 1 Although these terminologies may not all describe precisely the same visual functions, they draw very similar distinctions between two qualitatively different aspects of vision.

[1]  John H. R. Maunsell,et al.  Hierarchical organization and functional streams in the visual cortex , 1983, Trends in Neurosciences.

[2]  D. B. Bender,et al.  Visual activation of neurons in inferotemporal cortex depends on striate cortex and forebrain commissures. , 1975, Journal of neurophysiology.

[3]  W. Singer,et al.  Excitatory synaptic ensemble properties in the visual cortex of the macaque monkey: A current source density analysis of electrically evoked potentials , 1979, The Journal of comparative neurology.

[4]  Leslie G. Ungerleider,et al.  Object vision and spatial vision: two cortical pathways , 1983, Trends in Neurosciences.

[5]  S. Schein,et al.  Is there a high concentration of color-selective cells in area V4 of monkey visual cortex? , 1982, Journal of neurophysiology.

[6]  M. Carlson,et al.  Characteristics of sensory deficits following lesions of brodmann's areas 1 and 2 in the postcentral gyrus ofMacaca mulatta , 1981, Brain Research.

[7]  B G Breitmeyer,et al.  Implications of sustained and transient channels for theories of visual pattern masking, saccadic suppression, and information processing. , 1976, Psychological review.

[8]  L Weiskrantz,et al.  Review Lecture - Behavioural analysis of the monkey’s visual nervous system , 1972, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[9]  P. Schiller,et al.  Response properties of single cells in monkey striate cortex during reversible inactivation of individual lateral geniculate laminae. , 1981, Journal of neurophysiology.

[10]  H. Sakata,et al.  Functional properties of visual tracking neurons in posterior parietal association cortex of the monkey. , 1983, Journal of neurophysiology.

[11]  John H. R. Maunsell,et al.  Functional properties of neurons in middle temporal visual area of the macaque monkey. II. Binocular interactions and sensitivity to binocular disparity. , 1983, Journal of neurophysiology.

[12]  D. Tolhurst Sustained and transient channels in human vision , 1975, Vision Research.

[13]  D. Hubel,et al.  Laminar and columnar distribution of geniculo‐cortical fibers in the macaque monkey , 1972, The Journal of comparative neurology.

[14]  C. R. Michael,et al.  Projection patterns of single physiologically characterized optic tract fibres in cat , 1980, Nature.

[15]  J. Lund,et al.  Interlaminar connections and pyramidal neuron organisation in the visual cortex, area 17, of the Macaque monkey , 1975 .

[16]  C. Gross Visual Functions of Inferotemporal Cortex , 1973 .

[17]  D. V. van Essen,et al.  The pattern of interhemispheric connections and its relationship to extrastriate visual areas in the macaque monkey , 1982, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[18]  J Atema,et al.  Structures and functions of the sense of taste in the catfish (Ictalurus natalis). , 1971, Brain, behavior and evolution.

[19]  S. Zeki,et al.  Response properties and receptive fields of cells in an anatomically defined region of the superior temporal sulcus in the monkey. , 1971, Brain research.

[20]  D. Tolhurst Separate channels for the analysis of the shape and the movement of a moving visual stimulus , 1973, The Journal of physiology.

[21]  S. Zeki Cortical projections from two prestriate areas in the monkey. , 1971, Brain research.

[22]  G. Blobel,et al.  Transmembrane orientation of an early biosynthetic form of acetylcholine receptor delta subunit determined by proteolytic dissection in conjunction with monoclonal antibodies , 1983, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[23]  K. Yoshida,et al.  The projection from the dorsal lateral geniculate nucleus of the thalamus to extrastriate visual association cortex in the macaque monkey , 1981, Neuroscience Letters.

[24]  W. Pohl,et al.  Dissociation of spatial discrimination deficits following frontal and parietal lesions in monkeys. , 1973, Journal of comparative and physiological psychology.

[25]  P Lennie,et al.  Perceptual signs of parallel pathways. , 1980, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[26]  P. Lennie Parallel visual pathways: A review , 1980, Vision Research.

[27]  Leslie G. Ungerleider Two cortical visual systems , 1982 .

[28]  E. Blass Handbook of behavioral neurobiology , 1988 .

[29]  R. Shapley,et al.  Quantitative analysis of retinal ganglion cell classifications. , 1976, The Journal of physiology.

[30]  T. Finger,et al.  Two gustatory systems: facial and vagal gustatory nuclei have different brainstem connections. , 1985, Science.

[31]  D. C. Essen,et al.  Visual areas of the mammalian cerebral cortex. , 1979 .

[32]  G. Schneider,et al.  Contrasting visuomotor functions of tectum and cortex in the golden hamster , 1967, Psychologische Forschung.

[33]  C. Enroth-Cugell,et al.  The contrast sensitivity of retinal ganglion cells of the cat , 1966, The Journal of physiology.

[34]  D. Robinson,et al.  Behavioral enhancement of visual responses in monkey cerebral cortex. I. Modulation in posterior parietal cortex related to selective visual attention. , 1981, Journal of neurophysiology.

[35]  S. F. Takagi,et al.  Dual systems for sensory olfactory processing in higher primates , 1979, Trends in Neurosciences.

[36]  D. B. Bender,et al.  Visual properties of neurons in inferotemporal cortex of the Macaque. , 1972, Journal of neurophysiology.

[37]  C. Gilbert,et al.  The projections of different morphological types of ganglion cells in the cat retina , 1975, The Journal of comparative neurology.

[38]  G. Henry,et al.  Anatomical organization of the primary visual cortex (area 17) of the cat. A comparison with area 17 of the macaque monkey , 1979, The Journal of comparative neurology.

[39]  R. Mansfield,et al.  Analysis of visual behavior , 1982 .

[40]  H. Barlow,et al.  The mechanism of directionally selective units in rabbit's retina. , 1965, The Journal of physiology.

[41]  P. Schiller,et al.  Composition of geniculostriate input ot superior colliculus of the rhesus monkey. , 1979, Journal of neurophysiology.

[42]  G. Poggio,et al.  Binocular interaction and depth sensitivity in striate and prestriate cortex of behaving rhesus monkey. , 1977, Journal of neurophysiology.

[43]  K. Rockland,et al.  Laminar origins and terminations of cortical connections of the occipital lobe in the rhesus monkey , 1979, Brain Research.

[44]  David J. Gross On Writing Cultural Criticism , 1973, Telos.

[45]  Jonathan Stone,et al.  Hierarchical and parallel mechanisms in the organization of visual cortex , 1979, Brain Research Reviews.

[46]  B. C. Motter,et al.  The functional properties of the light-sensitive neurons of the posterior parietal cortex studied in waking monkeys: foveal sparing and opponent vector organization , 1981, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[47]  John H. R. Maunsell,et al.  The middle temporal visual area in the macaque: Myeloarchitecture, connections, functional properties and topographic organization , 1981, The Journal of comparative neurology.

[48]  R. Desimone,et al.  Prestriate afferents to inferior temporal cortex: an HRP study , 1980, Brain Research.

[49]  R. Desimone,et al.  Columnar organization of directionally selective cells in visual area MT of the macaque. , 1984, Journal of neurophysiology.

[50]  Jonathan Stone,et al.  Parallel Processing in the Visual System , 1983, Perspectives in Vision Research.

[51]  P. Lennie,et al.  Spatial and temporal contrast sensitivities of neurones in lateral geniculate nucleus of macaque. , 1984, The Journal of physiology.

[52]  M. Sanders Handbook of Sensory Physiology , 1975 .

[53]  R. Desimone,et al.  Visual areas in the temporal cortex of the macaque , 1979, Brain Research.

[54]  M. Yukie,et al.  Direct projection from the dorsal lateral geniculate nucleus to the prestriate cortex in macaque monkeys , 1981, The Journal of comparative neurology.

[55]  P. Schiller,et al.  Properties and tectal projections of monkey retinal ganglion cells. , 1977, Journal of neurophysiology.

[56]  H. Sakata,et al.  Spatial properties of visual fixation neurons in posterior parietal association cortex of the monkey. , 1980, Journal of neurophysiology.

[57]  E. Keverne Olfaction and taste — dual systems for sensory processing , 1978, Trends in Neurosciences.

[58]  J. Lund,et al.  The origin of efferent pathways from the primary visual cortex, area 17, of the macaque monkey as shown by retrograde transport of horseradish peroxidase , 1975, The Journal of comparative neurology.

[59]  S. Zeki Uniformity and diversity of structure and function in rhesus monkey prestriate visual cortex. , 1978, The Journal of physiology.

[60]  D. Robinson,et al.  Parietal association cortex in the primate: sensory mechanisms and behavioral modulations. , 1978, Journal of neurophysiology.

[61]  P. Dean Effects of inferotemporal lesions on the behavior of monkeys. , 1976, Psychological bulletin.

[62]  B. Cragg The topography of the afferent projections in the circumstriate visual cortex of the monkey studied by the Nauta method. , 1969, Vision research.

[63]  D. Hubel,et al.  Receptive fields and functional architecture of monkey striate cortex , 1968, The Journal of physiology.

[64]  R. Dykes Parallel processing of somatosensory information: A theory , 1983, Brain Research Reviews.

[65]  R. Shapley,et al.  The effect of contrast on the transfer properties of cat retinal ganglion cells. , 1978, The Journal of physiology.

[66]  R. Shapley,et al.  X and Y cells in the lateral geniculate nucleus of macaque monkeys. , 1982, The Journal of physiology.

[67]  G. Bonin,et al.  The neocortex of Macaca mulatta , 1947 .

[68]  L. Palmer,et al.  Multiple Cortical Visual Areas , 1981 .

[69]  S. Zeki Functional organization of a visual area in the posterior bank of the superior temporal sulcus of the rhesus monkey , 1974, The Journal of physiology.

[70]  D. Robinson,et al.  A METHOD OF MEASURING EYE MOVEMENT USING A SCLERAL SEARCH COIL IN A MAGNETIC FIELD. , 1963, IEEE transactions on bio-medical engineering.

[71]  S. Sherman,et al.  X- and Y-cells in the dorsal lateral geniculate nucleus of the owl monkey (Aotus trivirgatus) , 1976, Science.

[72]  S. Zeki Representation of central visual fields in prestriate cortex of monkey. , 1969, Brain research.

[73]  R. W. Rodieck,et al.  Identification, classification and anatomical segregation of cells with X‐like and Y‐like properties in the lateral geniculate nucleus of old‐world primates. , 1976, The Journal of physiology.

[74]  P. Gouras,et al.  Functional properties of ganglion cells of the rhesus monkey retina. , 1975, The Journal of physiology.

[75]  R. Andersen,et al.  The influence of the angle of gaze upon the excitability of the light- sensitive neurons of the posterior parietal cortex , 1983, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[76]  J. Tigges,et al.  Subcortical structures projecting to visual cortical areas in squirrel monkey , 1982, The Journal of comparative neurology.

[77]  John H. R. Maunsell,et al.  The connections of the middle temporal visual area (MT) and their relationship to a cortical hierarchy in the macaque monkey , 1983, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[78]  S. Zeki,et al.  Colour coding in rhesus monkey prestriate cortex. , 1973, Brain research.

[79]  J. Stone,et al.  Very slow-conducting ganglion cells in the cat's retina: a major, new functional type? , 1972, Brain research.

[80]  D. Ingle Two visual mechanisms underlying the behavior of fish , 1967, Psychologische Forschung.

[81]  C. Trevarthen,et al.  Two mechanisms of vision in primates , 1968, Psychologische Forschung.

[82]  P Gouras,et al.  Antidromic responses of orthodromically identified ganglion cells in monkey retina , 1969, The Journal of physiology.

[83]  R. Desimone,et al.  Cortical Visual Areas of the Temporal Lobe , 1981 .

[84]  V. Mountcastle,et al.  Posterior parietal association cortex of the monkey: command functions for operations within extrapersonal space. , 1975, Journal of neurophysiology.