Adaptive finite element strategies based on error assessment

Two main ingredients are needed for adaptive finite element computations. First, the error of a given solution must be assessed, by means of either error estimators or error indicators. After that, a new spatial discretization must be defined via h-, p- or r-adaptivity. In principle, any of the approaches for error assessment may be combined with any of the procedures for adapting the discretization. However, some combinations are clearly preferable. The advantages and limitations of the various alternatives are discussed. The most adequate strategies are illustrated by means of several applications in solid mechanics. Copyright © 1999 John Wiley & Sons, Ltd.

[1]  J. Oden,et al.  A procedure for a posteriori error estimation for h-p finite element methods , 1992 .

[2]  Ivo Babuška,et al.  A posteriori estimation of the error in the recovered derivatives of the finite element solution , 1997 .

[3]  Josep Sarrate,et al.  A POSTERIORI FINITE ELEMENT ERROR BOUNDS FOR NON-LINEAR OUTPUTS OF THE HELMHOLTZ EQUATION , 1999 .

[4]  Antonio Huerta,et al.  Arbitrary Lagrangian–Eulerian finite element analysis of strain localization in transient problems , 1995 .

[5]  O. C. Zienkiewicz,et al.  The superconvergent patch recovery (SPR) and adaptive finite element refinement , 1992 .

[6]  T. Belytschko,et al.  H-adaptive finite element methods for dynamic problems, with emphasis on localization , 1993 .

[7]  Pedro Díez,et al.  Error estimation and adaptive finite element analysis of softening solids , 1998 .

[8]  Gabriel Bugeda,et al.  A STUDY OF MESH OPTIMALITY CRITERIA IN ADAPTIVE FINITE ELEMENT ANALYSIS , 1993 .

[9]  Pierre Ladevèze,et al.  ERROR ESTIMATION AND MESH OPTIMIZATION FOR CLASSICAL FINITE ELEMENTS , 1991 .

[10]  O. C. Zienkiewicz,et al.  A simple error estimator and adaptive procedure for practical engineerng analysis , 1987 .

[11]  Pedro Díez,et al.  Error estimation for linear and nonlinear problems , 1998 .

[12]  J. W. Bull,et al.  Theoretical formulations for adaptive finite element computations , 1995 .

[13]  Folco Casadei,et al.  ALE stress update for transient and quasistatic processes , 1998 .

[14]  Pedro Díez,et al.  A posteriori error estimation for standard finite element analysis , 1998 .

[15]  O. C. Zienkiewicz,et al.  Adaptive remeshing for compressible flow computations , 1987 .

[16]  D. Benson An efficient, accurate, simple ALE method for nonlinear finite element programs , 1989 .

[17]  Ekkehard Ramm,et al.  A posteriori error estimation and adaptivity for linear elasticity using the reciprocal theorem , 1998 .

[18]  J. Hyvärinen,et al.  An Arbitrary Lagrangian-Eulerian finite element method , 1998 .

[19]  Antonio Huerta,et al.  Adaptive analysis of yield line patterns in plates with the arbitrary Lagrangian–Eulerian method , 1999 .

[20]  Nils-Erik Wiberg,et al.  Error estimation and adaptivity for h-version eigenfrequency analysis , 1998 .

[21]  Peter Bettess,et al.  Notes on mesh optimal criteria in adaptive finite element computations , 1995 .

[22]  Josep Sarrate Ramos Modelización numérica de la interacción fluido-solido rígido: desarrollo de algoritmos, generación de mallas y adaptabilidad , 1996 .

[23]  Ivo Babuška,et al.  A posteriori estimation and adaptive control of the pollution error in the h‐version of the finite element method , 1995 .

[24]  Pedro Díez,et al.  Adaptivity based on error estimation for viscoplastic softening materials , 2000 .

[25]  S. Giuliani An algorithm for continuous rezoning of the hydrodynamic grid in Arbitrary Lagrangian-Eulerian computer codes , 1982 .

[26]  A. Huerta,et al.  A unified approach to remeshing strategies for finite element h-adaptivity , 1999 .

[27]  Philippe Bouillard,et al.  Error estimation and adaptivity for the finite element method in acoustics , 1998 .

[28]  M. Ainsworth,et al.  A Reliable A Posteriori Error Estimator for Adaptive Hierarchic Modelling , 1998 .

[29]  J. C. Simo,et al.  A framework for finite strain elastoplasticity based on maximum plastic dissipation and the multiplicative decomposition. part II: computational aspects , 1988 .

[30]  I. Babuska,et al.  Pollution Error in the h-Version of the Finite Element Method and the Local Quality of the Recovered Derivatives. , 1997 .

[31]  Pedro Díez,et al.  Error estimation including pollution assessment for nonlinear finite element analysis , 2000 .

[32]  I. Babuska,et al.  A‐posteriori error estimates for the finite element method , 1978 .

[33]  Prodyot K. Basu,et al.  Adaptivity in P-Version Finite Element Analysis , 1983 .

[34]  J. Oden,et al.  A unified approach to a posteriori error estimation using element residual methods , 1993 .

[35]  R. Bank,et al.  Some a posteriori error estimators for elliptic partial differential equations , 1985 .

[36]  Antonio Huerta,et al.  Viscous flow with large free surface motion , 1988 .

[37]  Serge Prudhomme,et al.  A technique for a posteriori error estimation of h-p approximations of the Stokes equations , 1998 .

[38]  A. HUERTAt NEW ALE APPLICATIONS IN NON-LINEAR FAST-TRANSIENT SOLID DYNAMICS , .

[39]  M. Baines Moving finite elements , 1994 .

[40]  J. Huetink On the simulation of thermo-mechanical forming processes , 1986 .