Atmospheric spouted bed combustion: The role of hydrodynamics in emissions generation and control

Recent studies have reaffirmed the utility of spouted beds as potential combustion devices for a variety of fuels: solid, liquid and gaseous fuels (Arbib and Levy, 1982; Weinberg et al., 1988; Zhao et al., 1987; Altwicker et al., 1989; Altwicker and Lin, 1991; Altwicker et al., 1993; Konduri et al., 1994). In this study, the role of annulus residence time on the performance of such a spouted bed combustor is investigated. The experiments presented here show that fluid hydrodynamics in the annulus of a spouted bed combustor can significantly influence the overall performance; changing the residence time in the annulus significantly affects the concentrations of products due to incomplete combustion at the exit of the combustor. The annular residence time is varied by changing the shape of the bottom of the reactor, by introducing a draft tube and by changing the bed heighn. Propane is used as the fuel and sand as the bed medium. Inferences from the combustion results are supported by pressure and temperature profiles. A streamtube model (Lim and Mathur, 1976) was used to obtain an estimate of the residence time in the annulus. It is concluded that the flame processes taking place at the top of the annulus play a critical role in the emission generation and that more information is needed to understand the annulus-flame. Des etudes recentes ont confirme l'utilite des lits jaillissants comme systemes de combustion possibles pour une variete de combustibles: combustibles solides, liquides et gazeux (Arbib et Levy, 1982; Weinberg et al., 1988; Zhao et al., 1987; Altwicker et al., 1989; Altwicker et Lin, 1991; Altwicker et al., 1993; Konduri et al., 1994). Dans cette etude, on etudie le rǒle du temps de sejour annulaire sur la performance d'un tel combusteur a lit jaillissant. Les experiences presentees ici montrent que l'hydrodynamique du fluide dans la region du lit d'un combusteur a lit jaillissant peut considerablement influencer la performance globale; un changement du temps de sejour dans l'espace annulaire influe de facon significative sur les concentrations de produits en raison d'une combustion incomplete a la sortie du combusteur. On varie le temps de sejour annulaire en changeant la forme de la partie basse du reacteur, en introduisant un tube d'aspiration et en modifiant la hauteur de lit. On a utilise du propane comme combustible et du sable comme milieu de lit. Les deductions tirees des resultats de combustion sont appuyees par les profils de pression et de temperature. On a utilise un modele a tube de courant (Lim et Mathur, 1976) en vue d'obtenir une estimation du temps de sejour dans l'espace annulaire. On a conclu que les processus de flammes survenant en haut de l'espace annulaire jouent un rǒle critique dans la production des emissions et que davantage de donnees sont necessaires pour comprendre ce phenomene.

[1]  Ravi K. Konduri,et al.  Combustion of Propane in a Spouted Bed: Surface Effects , 1994 .

[2]  Ravi K. Konduri,et al.  Formation of Precursors to Chlorinated Dioxin/Furans under Heterogeneous Conditions , 1993 .

[3]  J. Grace,et al.  Hydrodynamics of spouted and spout‐fluidized beds at high temperature , 1992 .

[4]  Robert P. Hesketh,et al.  Combustion of methane and propane in an incipiently fluidized bed , 1991 .

[5]  F. B. Carleton,et al.  Partial oxidation of fuel-rich mixtures in a spouted bed combustor , 1988 .

[6]  Norman Epstein,et al.  HYDRODYNAMICS OF SPOUTED BEDS AT ELEVATED TEMPERATURES , 1987 .

[7]  N. Amundson,et al.  Reactor model assessment for the combustion of char in spouted beds of sand , 1984 .

[8]  J. Grace,et al.  Gas flow distribution in conical-base spouted beds , 1983 .

[9]  H. A. Arbib,et al.  Combustion of low heating value fuels and wastes in the spouted bed , 1982 .

[10]  M. H. Morgan,et al.  Predicting the maximum spoutable height in spouted beds of irregularly shaped particles , 1982 .

[11]  M. H. Morgan,et al.  Prediction of the maximum spoutable height and the average spout to inlet tube diameter ratio in spouted beds of spherical particles , 1979 .

[12]  K. B. Mathur,et al.  A flow model for gas movement in spouted beds , 1976 .

[13]  Ravi K. Konduri,et al.  Hydrodynamic Aspects of Spouted Beds at Elevated Temperatures , 1993 .

[14]  F. Weinberg,et al.  Near-Limit Combustion in Spouted and in Crater Beds , 1992 .

[15]  J. Grace,et al.  Flow regimes and combustion behaviour in coal-burning spouted and spout-fluid beds , 1987 .

[16]  Yaman Arkun,et al.  Studies on modeling and control of spouted bed reactors—I , 1982 .

[17]  N. Piccinini,et al.  Vapour phase chemical reaction in spouted beds: Verification of theory , 1979 .

[18]  F. Weinberg,et al.  Combustion in spouted beds , 1978 .