Recent Advances of Radionuclide-Based Molecular Imaging of Atherosclerosis.

Atherosclerosis is a systemic disease characterized by the development of multifocal plaque lesions within vessel walls and extending into the vascular lumen. The disease takes decades to develop symptomatic lesions, affording opportunities for accurate detection of plaque progression, analysis of risk factors responsible for clinical events, and planning personalized treatment. Of the available molecular imaging modalities, radionuclidebased imaging strategies have been favored due to their sensitivity, quantitative detection and pathways for translational research. This review summarizes recent advances of radiolabeled small molecules, peptides, antibodies and nanoparticles for atherosclerotic plaque imaging during disease progression.

[1]  M. Tian Molecular Imaging of Small Animals: Instrumentation and Applications , 2015, The Journal of Nuclear Medicine.

[2]  U. Haberkorn,et al.  Radionuclides in drug development. , 2015, Drug discovery today.

[3]  P. Lambin,et al.  Reversal of Hypoxia in Murine Atherosclerosis Prevents Necrotic Core Expansion by Enhancing Efferocytosis , 2014, Arteriosclerosis, thrombosis, and vascular biology.

[4]  Jason S. Lewis,et al.  Annotating STEAP1 Regulation in Prostate Cancer with 89Zr Immuno-PET , 2014, The Journal of Nuclear Medicine.

[5]  Forrest M Kievit,et al.  Glypican-3–Targeting F(ab′)2 for 89Zr PET of Hepatocellular Carcinoma , 2014, The Journal of Nuclear Medicine.

[6]  René M. Botnar,et al.  PET/CT and MR imaging biomarker of lipid-rich plaques using [64Cu]-labeled scavenger receptor (CD68-Fc). , 2014, International journal of cardiology.

[7]  Yongjian Liu,et al.  Facile synthesis, pharmacokinetic and systemic clearance evaluation, and positron emission tomography cancer imaging of ⁶⁴Cu-Au alloy nanoclusters. , 2014, Nanoscale.

[8]  R. Tavaré,et al.  Applications of ImmunoPET: Using 124I-Anti-PSCA A11 Minibody for Imaging Disease Progression and Response to Therapy in Mouse Xenograft Models of Prostate Cancer , 2014, Clinical Cancer Research.

[9]  Jaw-Yuan Wang,et al.  PET Imaging of β-Glucuronidase Activity by an Activity-Based 124I-Trapping Probe for the Personalized Glucuronide Prodrug Targeted Therapy , 2014, Molecular Cancer Therapeutics.

[10]  Gilles Barone-Rochette,et al.  99mTc-cAbVCAM1-5 Imaging Is a Sensitive and Reproducible Tool for the Detection of Inflamed Atherosclerotic Lesions in Mice , 2014, The Journal of Nuclear Medicine.

[11]  M. Frómeta,et al.  Targeting arterial wall sulfated glycosaminoglycans in rabbit atherosclerosis with a mouse/human chimeric antibody , 2014, mAbs.

[12]  B. Cosyns,et al.  Recent Advances in Visualizing Vulnerable Plaque: Focus on Noninvasive Molecular Imaging , 2014, Current Cardiology Reports.

[13]  C. Stefanadis,et al.  Innate and adaptive inflammation as a therapeutic target in vascular disease: the emerging role of statins. , 2014, Journal of the American College of Cardiology.

[14]  Bernadette V. Marquez,et al.  Glypican-3–Targeted 89Zr PET Imaging of Hepatocellular Carcinoma: Where Antibody Imaging Dares to Tread , 2014, The Journal of Nuclear Medicine.

[15]  Eric D. Pressly,et al.  PET/CT Imaging of Chemokine Receptor CCR5 in Vascular Injury Model Using Targeted Nanoparticle , 2014, The Journal of Nuclear Medicine.

[16]  E. Garcı́a-España,et al.  Visualizing the atherosclerotic plaque: a chemical perspective. , 2014, Chemical Society reviews.

[17]  G. Coukos,et al.  Development of 124I Immuno-PET Targeting Tumor Vascular TEM1/Endosialin , 2014, The Journal of Nuclear Medicine.

[18]  V. Fuster,et al.  Noninvasive Assessment of Hypoxia in Rabbit Advanced Atherosclerosis Using 18F-fluoromisonidazole Positron Emission Tomographic Imaging , 2014, Circulation. Cardiovascular imaging.

[19]  Adriano G. Rossi,et al.  Apoptotic cell clearance: basic biology and therapeutic potential , 2014, Nature Reviews Immunology.

[20]  E. Ruoslahti,et al.  64Cu-Labeled LyP-1-Dendrimer for PET-CT Imaging of Atherosclerotic Plaque , 2014, Bioconjugate chemistry.

[21]  Mikako Ogawa,et al.  Development of 111In-Labeled Liposomes for Vulnerable Atherosclerotic Plaque Imaging , 2014, The Journal of Nuclear Medicine.

[22]  A. Zernecke,et al.  Molecular Imaging of Inflammation in Atherosclerosis , 2013, Theranostics.

[23]  M. Daemen,et al.  Evaluation of 111In-labeled EPep and FibPep as tracers for fibrin SPECT imaging. , 2013, Molecular pharmaceutics.

[24]  M. Daemen,et al.  Hypoxia in atherosclerosis and inflammation , 2013, Current opinion in lipidology.

[25]  D. Teupser,et al.  Altered Expression of Raet1e, a Major Histocompatibility Complex Class 1–Like Molecule, Underlies the Atherosclerosis Modifier Locus Ath11 10b , 2013, Circulation research.

[26]  J. S. Lee,et al.  Feasibility and kinetic characteristics of 68Ga-NOTA-RGD PET for in vivo atherosclerosis imaging , 2013, Annals of Nuclear Medicine.

[27]  P. Perret,et al.  In Vivo Molecular Imaging of Atherosclerotic Lesions in ApoE-/-mice using VCAM-1-Specific , 99 m Tc-Labeled Peptidic Sequences , 2013 .

[28]  R. Pierce,et al.  PET Imaging of Chemokine Receptors in Vascular Injury–Accelerated Atherosclerosis , 2013, The Journal of Nuclear Medicine.

[29]  F. Mach,et al.  The vulnerable coronary plaque: update on imaging technologies , 2013, Thrombosis and Haemostasis.

[30]  P. Libby,et al.  Immune effector mechanisms implicated in atherosclerosis: from mice to humans. , 2013, Immunity.

[31]  Yasuyoshi Watanabe,et al.  Novel molecular imaging of atherosclerosis with gallium-68-labeled apolipoprotein A-I mimetic peptide and positron emission tomography. , 2013, Circulation journal : official journal of the Japanese Circulation Society.

[32]  Daniel G. Anderson,et al.  Monocyte-Directed RNAi Targeting CCR2 Improves Infarct Healing in Atherosclerosis-Prone Mice , 2013, Circulation.

[33]  Yasuyoshi Watanabe,et al.  Detection of early stage atherosclerotic plaques using PET and CT fusion imaging targeting P-selectin in low density lipoprotein receptor-deficient mice. , 2013, Biochemical and biophysical research communications.

[34]  Ralph Weissleder,et al.  Polymeric Nanoparticle PET/MR Imaging Allows Macrophage Detection in Atherosclerotic Plaques , 2013, Circulation research.

[35]  Linda A. Jelicks,et al.  MicroPET/SPECT/CT imaging of small animal models of disease. , 2013, The American journal of pathology.

[36]  P. Libby,et al.  Molecular imaging of atherosclerosis for improving diagnostic and therapeutic development. , 2012, Circulation research.

[37]  Hua-Lin Wu,et al.  In vivo examination of 111In-bis-5HT-DTPA to target myeloperoxidase in atherosclerotic ApoE knockout mice , 2012, Journal of drug targeting.

[38]  A. Walch,et al.  Diet intervention reduces uptake of αvβ3 integrin-targeted PET tracer 18F-galacto-RGD in mouse atherosclerotic plaques , 2012, Journal of Nuclear Cardiology.

[39]  Jakub Toczek,et al.  Nanobodies Targeting Mouse/Human VCAM1 for the Nuclear Imaging of Atherosclerotic Lesions , 2012, Circulation research.

[40]  A. Sinusas,et al.  Atherosclerosis Plaque Heterogeneity and Response to Therapy Detected by In Vivo Molecular Imaging of Matrix Metalloproteinase Activation , 2011, The Journal of Nuclear Medicine.

[41]  J. Knuuti,et al.  Uptake of 68gallium in atherosclerotic plaques in LDLR-/-ApoB100/100 mice , 2011, EJNMMI research.

[42]  J. Correia,et al.  Radiometallated peptides for molecular imaging and targeted therapy. , 2011, Dalton transactions.

[43]  Jean-Claude Tardif,et al.  Imaging Biomarkers in Atherosclerosis Trials , 2011, Circulation. Cardiovascular imaging.

[44]  J. Knuuti,et al.  Detection of Hypoxia by [18F]EF5 in Atherosclerotic Plaques in Mice , 2011, Arteriosclerosis, thrombosis, and vascular biology.

[45]  I. Y. Chen,et al.  Cardiovascular molecular imaging: focus on clinical translation. , 2011, Circulation.

[46]  H. Saji,et al.  Imaging with radiolabelled anti-membrane type 1 matrix metalloproteinase (MT1-MMP) antibody: potentials for characterizing atherosclerotic plaques , 2010, European Journal of Nuclear Medicine and Molecular Imaging.

[47]  C. Meyer,et al.  Molecular Imaging of Atherosclerotic Plaques Targeted to Oxidized LDL Receptor LOX-1 by SPECT/CT and Magnetic Resonance , 2010, Circulation. Cardiovascular imaging.

[48]  P. Low,et al.  Imaging of Atherosclerosis in Apoliprotein E Knockout Mice: Targeting of a Folate-Conjugated Radiopharmaceutical to Activated Macrophages , 2010, Journal of Nuclear Medicine.

[49]  Ralph Weissleder,et al.  The Vascular Biology of Atherosclerosis and Imaging Targets , 2010, Journal of Nuclear Medicine.

[50]  K. Någren,et al.  Uptake of 11C-Choline in Mouse Atherosclerotic Plaques , 2010, Journal of Nuclear Medicine.

[51]  M. Welch,et al.  Molecular Imaging of Atherosclerotic Plaque with 64Cu-Labeled Natriuretic Peptide and PET , 2010, Journal of Nuclear Medicine.

[52]  Ralph Weissleder,et al.  18F-4V for PET-CT imaging of VCAM-1 expression in atherosclerosis. , 2009, JACC. Cardiovascular imaging.

[53]  J. Knuuti,et al.  68Ga-DOTA-RGD peptide: biodistribution and binding into atherosclerotic plaques in mice , 2009, European Journal of Nuclear Medicine and Molecular Imaging.

[54]  A. Walch,et al.  Evaluation of &agr;v&bgr;3 Integrin-Targeted Positron Emission Tomography Tracer 18F-Galacto-RGD for Imaging of Vascular Inflammation in Atherosclerotic Mice , 2009, Circulation. Cardiovascular imaging.

[55]  N. Narula,et al.  Molecular Imaging of Matrix Metalloproteinase Expression in Atherosclerotic Plaques of Mice Deficient in Apolipoprotein E or Low-Density-Lipoprotein Receptor , 2009, Journal of Nuclear Medicine.

[56]  D. Kraitchman,et al.  Advances in Cardiovascular Imaging Multimodality Cardiovascular Molecular Imaging, Part II , 2008 .

[57]  A. Sinusas,et al.  Molecular Imaging of Activated Matrix Metalloproteinases in Vascular Remodeling , 2008, Circulation.

[58]  H. Saji,et al.  Targeting of Lectinlike Oxidized Low-Density Lipoprotein Receptor 1 (LOX-1) with 99mTc-Labeled Anti–LOX-1 Antibody: Potential Agent for Imaging of Vulnerable Plaque , 2008, Journal of Nuclear Medicine.

[59]  M. Bergström,et al.  The importance of high specific radioactivity in the performance of 68Ga-labeled peptide. , 2008, Nuclear medicine and biology.

[60]  Ralph Weissleder,et al.  Nanoparticle PET-CT Imaging of Macrophages in Inflammatory Atherosclerosis , 2008, Circulation.

[61]  D. Boturyn,et al.  Molecular imaging of vascular cell adhesion molecule-1 expression in experimental atherosclerotic plaques with radiolabelled B2702-p , 2007, European Journal of Nuclear Medicine and Molecular Imaging.

[62]  A. Fischman,et al.  Detection of inflamed atherosclerotic lesions with diadenosine-5′,5‴-P1,P4-tetraphosphate (Ap4A) and positron-emission tomography , 2006, Proceedings of the National Academy of Sciences.

[63]  R. Virmani,et al.  Noninvasive imaging of atherosclerotic lesions in apolipoprotein E-deficient and low-density-lipoprotein receptor-deficient mice with annexin A5. , 2006, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[64]  S. Cherry,et al.  Physics in Nuclear Medicine , 2004 .

[65]  H. Watabe,et al.  (18)F-FDG accumulation in atherosclerotic plaques: immunohistochemical and PET imaging study. , 2004, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[66]  Otmar Schober,et al.  Scintigraphic Imaging of Matrix Metalloproteinase Activity in the Arterial Wall In Vivo , 2004, Circulation.

[67]  R. Virmani,et al.  Targeting of Apoptotic Macrophages and Experimental Atheroma With Radiolabeled Annexin V: A Technique With Potential for Noninvasive Imaging of Vulnerable Plaque , 2003, Circulation.

[68]  J. Plutzky The vascular biology of atherosclerosis. , 2003, The American journal of medicine.

[69]  Christodoulos Stefanadis,et al.  Vulnerable plaque: the challenge to identify and treat it. , 2003, Journal of interventional cardiology.

[70]  J. Witztum,et al.  In vivo uptake of radiolabeled MDA2, an oxidation-specific monoclonal antibody, provides an accurate measure of atherosclerotic lesions rich in oxidized LDL and is highly sensitive to their regression. , 2000, Arteriosclerosis, thrombosis, and vascular biology.

[71]  G. Hansson,et al.  Immune mechanisms in atherosclerosis. , 1994, Coronary artery disease.

[72]  C. Zarins,et al.  Compensatory enlargement of human atherosclerotic coronary arteries. , 1987, The New England journal of medicine.

[73]  J. Witztum,et al.  Immunogenicity of homologous low density lipoprotein after methylation, ethylation, acetylation, or carbamylation: generation of antibodies specific for derivatized lysine. , 1984, Journal of lipid research.

[74]  Gopal B. Saha,et al.  Fundamentals of Nuclear Pharmacy , 1979, Springer New York.

[75]  E. Falk,et al.  Mechanisms of Plaque Formation and Rupture , 2014 .

[76]  Christoph Hoeschen,et al.  Radiation physics for nuclear medicine , 2011 .

[77]  A. Alwan Global status report on noncommunicable diseases 2010. , 2011 .

[78]  Andrew V. Sutherland,et al.  Molecular tracers for the PET and SPECT imaging of disease. , 2011, Chemical Society reviews.

[79]  John Andersson,et al.  Adaptive immunity and atherosclerosis. , 2010, Clinical immunology.

[80]  G. Hansson,et al.  Innate immune signals in atherosclerosis. , 2010, Clinical immunology.

[81]  K. Någren,et al.  Uptake of inflammatory cell marker [11C]PK11195 into mouse atherosclerotic plaques , 2008, European Journal of Nuclear Medicine and Molecular Imaging.

[82]  Jason S. Lewis,et al.  Molecular imaging: The application of small animal positron emission tomography , 2002, Journal of cellular biochemistry. Supplement.

[83]  Samuel A Wickline,et al.  Molecular imaging, targeted therapeutics, and nanoscience , 2002, Journal of cellular biochemistry. Supplement.

[84]  Syed M. Qaim,et al.  Nuclear data relevant to the production and application of diagnostic radionuclide , 2001 .

[85]  J. Witztum,et al.  Radiolabeled MDA2, an oxidation-specific, monoclonal antibody, identifies native atherosclerotic lesions in vivo , 1999, Journal of nuclear cardiology : official publication of the American Society of Nuclear Cardiology.