Short-time diffusion in concentrated bidisperse hard-sphere suspensions.

Diffusion in bidisperse Brownian hard-sphere suspensions is studied by Stokesian Dynamics (SD) computer simulations and a semi-analytical theoretical scheme for colloidal short-time dynamics, based on Beenakker and Mazur's method [Physica A 120, 388-410 (1983); 126, 349-370 (1984)]. Two species of hard spheres are suspended in an overdamped viscous solvent that mediates the salient hydrodynamic interactions among all particles. In a comprehensive parameter scan that covers various packing fractions and suspension compositions, we employ numerically accurate SD simulations to compute the initial diffusive relaxation of density modulations at the Brownian time scale, quantified by the partial hydrodynamic functions. A revised version of Beenakker and Mazur's δγ-scheme for monodisperse suspensions is found to exhibit surprisingly good accuracy, when simple rescaling laws are invoked in its application to mixtures. The so-modified δγ scheme predicts hydrodynamic functions in very good agreement with our SD simulation results, for all densities from the very dilute limit up to packing fractions as high as 40%.

[1]  John F. Brady,et al.  A new resistance function for two rigid spheres in a uniform compressible low-Reynolds-number flow , 2006 .

[2]  K. Makuch Scattering series in the mobility problem for suspensions , 2012, 1208.4255.

[3]  S. Egelhaaf,et al.  Transient dynamics during stress overshoots in binary colloidal glasses. , 2014, Soft matter.

[4]  C. Beenakker Ewald sum of the Rotne-Prager tensor , 1986 .

[5]  DEUTSCHE PHYSIKALISCHE,et al.  A new model for simulating colloidal dynamics , 2004 .

[6]  Norman J. Wagner,et al.  The viscosity of bimodal and polydisperse suspensions of hard spheres in the dilute limit , 1994 .

[7]  Klein,et al.  Hydrodynamic effects in polydisperse charged colloidal suspensions at short times. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[8]  Amit Kumar,et al.  Accelerated boundary integral method for multiphase flow in non-periodic geometries , 2011, J. Comput. Phys..

[9]  Chingyi Chang,et al.  Dynamic simulation of bimodal suspensions of hydrodynamically interacting spherical particles , 1993, Journal of Fluid Mechanics.

[10]  K. Makuch,et al.  Transport properties of suspensions-critical assessment of Beenakker-Mazur method. , 2012, The Journal of chemical physics.

[11]  Kenneth W. Desmond,et al.  Spatial and temporal dynamical heterogeneities approaching the binary colloidal glass transition , 2009, 0911.0702.

[12]  P. Mazur,et al.  Diffusion of spheres in a concentrated suspension : resummation of many-body hydrodynamic interactions , 1983 .

[13]  G. Nägele,et al.  Short-time rheology and diffusion in suspensions of Yukawa-type colloidal particles. , 2011, The Journal of chemical physics.

[14]  Jan K. G. Dhont,et al.  An introduction to dynamics of colloids , 1996 .

[15]  Sangtae Kim,et al.  Microhydrodynamics: Principles and Selected Applications , 1991 .

[16]  C. W. J. Beenakker,et al.  Diffusion of spheres in a concentrated suspension II , 1984 .

[17]  Gerhard Gompper,et al.  Multi-particle collision dynamics simulations of sedimenting colloidal dispersions in confinement. , 2010, Faraday discussions.

[18]  Faraday Discuss , 1985 .

[19]  J. Koelman,et al.  Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics , 1992 .

[20]  Masao Kakudo,et al.  Small Angle Scattering of X-Rays , 1968 .

[21]  G. Nägele,et al.  Short-time transport properties in dense suspensions: from neutral to charge-stabilized colloidal spheres. , 2008, The Journal of chemical physics.

[22]  Zhigang Li,et al.  Hydrodynamic interactions in dissipative particle dynamics , 2008 .

[23]  A. Akcasu,et al.  On the dynamics of polyelectrolyte solutions , 1984 .

[24]  M. Krüger,et al.  Diffusion of a sphere in a dilute solution of polymer coils. , 2009, The Journal of chemical physics.

[25]  P. Mazur,et al.  Self-diffusion of spheres in a concentrated suspension , 1983 .

[26]  J. Brady,et al.  Hydrodynamic transport properties of hard-sphere dispersions. I. Suspensions of freely mobile particles , 1988 .

[27]  Anthony J. C. Ladd,et al.  Hydrodynamic transport coefficients of random dispersions of hard spheres , 1990 .

[28]  G. Nägele,et al.  On the dynamics and structure of charge-stabilized suspensions , 1996 .

[29]  Kevin R. Hase,et al.  Calculation of the Ewald summed far-field mobility functions for arbitrarily sized spherical particles in Stokes flow , 2001 .

[30]  A. Ladd,et al.  Lattice Boltzmann Simulations of Soft Matter Systems , 2008, 0803.2826.

[31]  K. Mutch,et al.  Transient dynamics in dense colloidal suspensions under shear: shear rate dependence , 2012, Journal of physics. Condensed matter : an Institute of Physics journal.

[32]  Hansen,et al.  Phase separation of asymmetric binary hard-sphere fluids. , 1991, Physical review letters.

[33]  R. Jones Diffusion of tagged interacting spherically symmetric polymers , 1979 .

[34]  B. Lubachevsky,et al.  Geometric properties of random disk packings , 1990 .

[35]  Louis J. Durlofsky,et al.  Dynamic simulation of hydrodynamically interacting particles , 1987, Journal of Fluid Mechanics.

[36]  T. Ihle,et al.  Stochastic rotation dynamics: a Galilean-invariant mesoscopic model for fluid flow. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[37]  S. Wereley,et al.  soft matter , 2019, Science.

[38]  Ladd,et al.  Short-time motion of colloidal particles: Numerical simulation via a fluctuating lattice-Boltzmann equation. , 1993, Physical review letters.

[39]  John F. Brady,et al.  Accelerated Stokesian dynamics: Brownian motion , 2003 .

[40]  C. Pozrikidis,et al.  Boundary Integral and Singularity Methods for Linearized Viscous Flow: The boundary integral equations , 1992 .

[41]  David J. Jeffrey,et al.  The pressure moments for two rigid spheres in low-Reynolds-number flow , 1993 .

[42]  D. Langreth,et al.  Structure of Binary Liquid Mixtures. I , 1967 .

[43]  H. Löwen,et al.  Liquid pair correlations in four spatial dimensions: theory versus simulation , 2014, 1411.1666.

[44]  J. Brady,et al.  Dynamic simulation of hydrodynamically interacting suspensions , 1988, Journal of Fluid Mechanics.

[45]  G. Nägele,et al.  Tracer-diffusion in binary colloidal hard-sphere suspensions , 2002 .

[46]  D. Young,et al.  New, thermodynamically consistent, integral equation for simple fluids , 1984 .

[47]  Eligiusz Wajnryb,et al.  Lubrication corrections for three-particle contribution to short-time self-diffusion coefficients in colloidal dispersions , 1999 .

[48]  W. van Megen,et al.  Motions in binary mixtures of hard colloidal spheres: melting of the glass. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[49]  Jerome K. Percus,et al.  Analysis of Classical Statistical Mechanics by Means of Collective Coordinates , 1958 .

[50]  Antje Sommer,et al.  Theory Of Simple Liquids , 2016 .

[51]  E. Wajnryb,et al.  Rotational and translational self-diffusion in concentrated suspensions of permeable particles. , 2011, The Journal of chemical physics.

[52]  Monica L. Skoge,et al.  Packing hyperspheres in high-dimensional Euclidean spaces. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[53]  G. Batchelor,et al.  Diffusion in a dilute polydisperse system of interacting spheres , 1983, Journal of Fluid Mechanics.

[54]  J. Brady,et al.  Short-time transport properties of bidisperse suspensions and porous media: a Stokesian dynamics study. , 2014, The Journal of chemical physics.

[55]  Ladd,et al.  Temporal and spatial dependence of hydrodynamic correlations: Simulation and experiment. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[56]  R. Klein,et al.  Structural properties of colloidal suspensions , 1995 .

[57]  Hartmut Löwen,et al.  Highly asymmetric electrolytes in the primitive model: Hypernetted chain solution in arbitrary spatial dimensions , 2013, J. Comput. Chem..

[58]  Helen J. Wilson,et al.  Stokes flow past three spheres , 2013, J. Comput. Phys..

[59]  David J. Jeffrey,et al.  The calculation of the low Reynolds number resistance functions for two unequal spheres , 1992 .

[60]  Joel L. Lebowitz,et al.  Exact Solution of Generalized Percus-Yevick Equation for a Mixture of Hard Spheres , 1964 .

[61]  R. Pecora Dynamic Light Scattering , 1985 .

[62]  David J. Jeffrey,et al.  Low-Reynolds-number flow between converging spheres , 1982 .

[63]  O. Glatter,et al.  19 – Small-Angle X-ray Scattering , 1973 .

[64]  Fabian Westermeier,et al.  Structure and short-time dynamics in concentrated suspensions of charged colloids. , 2012, The Journal of chemical physics.

[65]  A. Malevanets,et al.  Mesoscopic model for solvent dynamics , 1999 .

[66]  R. Klein,et al.  Collective diffusion of charged spheres in the presence of hydrodynamic interaction , 1991 .

[67]  W. Ehrenberg,et al.  Small-Angle X-Ray Scattering , 1952, Nature.

[68]  John F. Brady,et al.  Accelerated Stokesian Dynamics simulations , 2001, Journal of Fluid Mechanics.

[69]  Rotational self-diffusion in suspensions of charged particles: Revised Beenakker-Mazur and Pairwise Additivity methods versus numerical simulations , 2015, 1501.01601.

[70]  David J. Jeffrey,et al.  Calculation of the resistance and mobility functions for two unequal rigid spheres in low-Reynolds-number flow , 1984, Journal of Fluid Mechanics.