Optics miniaturization strategy for demanding Raman spectroscopy applications

[1]  Pinyi Ma,et al.  Applications of surface-enhanced Raman spectroscopy based on portable Raman spectrometers: a review of recent developments. , 2022, Luminescence : the journal of biological and chemical luminescence.

[2]  R. B. Grønnemose,et al.  Accurate and fast identification of minimally prepared bacteria phenotypes using Raman spectroscopy assisted by machine learning , 2022, Scientific Reports.

[3]  O. Ilchenko,et al.  Towards Raman imaging of centimeter scale tissue areas for real-time opto-molecular visualization of tissue boundaries for clinical applications , 2022, Light, science & applications.

[4]  Chunmei Zeng,et al.  Design of optical system of crossed astigmatism Czerny-Turner spectrometer , 2021, Applied Optics and Photonics China.

[5]  H. Ju,et al.  From lab to field: surface-enhanced Raman scattering-based sensing strategies for on-site analysis , 2021, TrAC Trends in Analytical Chemistry.

[6]  Wansun Kim,et al.  A facile, portable surface-enhanced Raman spectroscopy sensing platform for on-site chemometrics of toxic chemicals , 2021 .

[7]  G. Pezzotti Raman spectroscopy in cell biology and microbiology , 2021, Journal of Raman Spectroscopy.

[8]  Mengmeng Wang,et al.  Applications of Raman Spectroscopy in Bacterial Infections: Principles, Advantages, and Shortcomings , 2021, Frontiers in Microbiology.

[9]  Zhimei Qi,et al.  Research Progress on On‐Chip Fourier Transform Spectrometer , 2021, Laser & Photonics Reviews.

[10]  G. Valentini,et al.  A high-throughput Fourier-transform wide-field hyperspectral microscope for fluorescence and Raman imaging , 2021 .

[11]  A. Boisen,et al.  Quantification of Methotrexate in Human Serum Using Surface-Enhanced Raman Scattering-Toward Therapeutic Drug Monitoring. , 2021, ACS sensors.

[12]  Xiaonan Lu,et al.  Application of Raman Spectroscopic Methods in Food Safety: A Review , 2021, Biosensors.

[13]  Pavel Matousek,et al.  Spatially offset Raman spectroscopy , 2021, Nature Reviews Methods Primers.

[14]  Xia Zhang,et al.  A high-resolution miniaturized ultraviolet spectrometer based on arrayed waveguide grating and microring cascade structures , 2021 .

[15]  S. Kozlov,et al.  In vivo diagnosis of skin cancer with a portable Raman spectroscopic device , 2021, Experimental dermatology.

[16]  Bob A. Bowen,et al.  Robotic arm material characterisation using LIBS and Raman in a nuclear hot cell decommissioning environment. , 2021, Journal of hazardous materials.

[17]  R. Lu,et al.  High-Performance Ultra-Thin Spectrometer Optical Design Based on Coddington’s Equations , 2021, Sensors.

[18]  Christoph Krafft,et al.  Wide Field Spectral Imaging with Shifted Excitation Raman Difference Spectroscopy Using the Nod and Shuffle Technique , 2020, Sensors.

[19]  Hugo Thienpont,et al.  Miniaturized broadband spectrometer based on a three-segment diffraction grating for spectral tissue sensing , 2020 .

[20]  Martin Wolf,et al.  Calibration transfer for bioprocess Raman monitoring using Kennard Stone piecewise direct standardization and multivariate algorithms , 2020, Engineering Reports.

[21]  J. Carter,et al.  A Monolithic Spatial Heterodyne Raman Spectrometer: Initial Tests , 2020, Applied spectroscopy.

[22]  Kathleen Vunckx,et al.  Towards a miniaturized application-specific Raman spectrometer , 2020, Defense + Commercial Sensing.

[23]  A. Boisen,et al.  Volumetric Raman chemical imaging of drug delivery systems , 2020, Journal of Raman Spectroscopy.

[24]  Peter T C So,et al.  Direct observation of glucose fingerprint using in vivo Raman spectroscopy , 2020, Science Advances.

[25]  Frederic Lesage,et al.  Integration of a Raman spectroscopy system to a robotic-assisted surgical system for real-time tissue characterization during radical prostatectomy procedures , 2019, Journal of biomedical optics.

[26]  Stefano Ermon,et al.  Rapid identification of pathogenic bacteria using Raman spectroscopy and deep learning , 2019, Nature Communications.

[27]  David I. Ellis,et al.  Rapid through-container detection of fake spirits and methanol quantification with handheld Raman spectroscopy. , 2019, The Analyst.

[28]  Gregory W. Auner,et al.  Applications of Raman spectroscopy in cancer diagnosis , 2018, Cancer and Metastasis Reviews.

[29]  Tian Gu,et al.  High-performance and scalable on-chip digital Fourier transform spectroscopy , 2018, Nature Communications.

[30]  P. Leisher,et al.  Feedback-Induced Failure of High-Power Diode Lasers , 2018, IEEE Journal of Quantum Electronics.

[31]  J. Popp,et al.  Spectral reconstruction for shifted-excitation Raman difference spectroscopy (SERDS). , 2018, Talanta.

[32]  Eliana Cordero,et al.  In-vivo Raman spectroscopy: from basics to applications , 2018, Journal of biomedical optics.

[33]  Sinead J. Barton,et al.  Signal to noise ratio of Raman spectra of biological samples , 2018, Photonics Europe.

[34]  A. Boisen,et al.  Injection molded lab-on-a-disc platform for screening of genetically modified E. coli using liquid-liquid extraction and surface enhanced Raman scattering. , 2018, Lab on a chip.

[35]  F. J. González,et al.  Raman Spectroscopy for In Vivo Medical Diagnosis , 2018 .

[36]  Joseph Bonvallet,et al.  Miniature Raman spectrometer development , 2018, BiOS.

[37]  J. Jehlička,et al.  Applying portable Raman spectrometers for field discrimination of sulfates: Training for successful extraterrestrial detection , 2017 .

[38]  P. Barnett,et al.  Miniature Spatial Heterodyne Raman Spectrometer with a Cell Phone Camera Detector , 2017, Applied spectroscopy.

[39]  Anja Boisen,et al.  Surface Enhanced Raman Scattering for Quantification of p-Coumaric Acid Produced by Escherichia coli. , 2017, Analytical chemistry.

[40]  Ian R. Lewis,et al.  Raman spectroscopy as a process analytical technology for pharmaceutical manufacturing and bioprocessing , 2016, Analytical and Bioanalytical Chemistry.

[41]  Roelof Jansen,et al.  CMOS-compatible silicon nitride spectrometers for lab-on-a-chip spectral sensing , 2016, Photonics Europe.

[42]  Stefan Will,et al.  A shifted‐excitation Raman difference spectroscopy (SERDS) evaluation strategy for the efficient isolation of Raman spectra from extreme fluorescence interference , 2016 .

[43]  石丸 伊知郎 Spectrometry device and spectrometry method , 2016 .

[44]  C. Kendall,et al.  Raman spectroscopy for medical diagnostics--From in-vitro biofluid assays to in-vivo cancer detection. , 2015, Advanced drug delivery reviews.

[45]  Dörte Solle,et al.  Sensor systems for bioprocess monitoring , 2015 .

[46]  J. Förster,et al.  Highly Active and Specific Tyrosine Ammonia-Lyases from Diverse Origins Enable Enhanced Production of Aromatic Compounds in Bacteria and Saccharomyces cerevisiae , 2015, Applied and Environmental Microbiology.

[47]  Andreas Unger,et al.  High-power diode lasers under external optical feedback , 2015, Photonics West - Lasers and Applications in Science and Engineering.

[48]  J. Jehlička,et al.  Use of miniaturized Raman spectrometer for detection of sulfates of different hydration states – Significance for Mars studies , 2014 .

[49]  Kishan Dholakia,et al.  A Raman spectroscopy bio‐sensor for tissue discrimination in surgical robotics , 2014, Journal of biophotonics.

[50]  Alan G. Ryder,et al.  Performance monitoring of a mammalian cell based bioprocess using Raman spectroscopy. , 2013, Analytica chimica acta.

[51]  Jian-Jun He,et al.  CMOS-Compatible Integrated Spectrometer Based on Echelle Diffraction Grating and MSM Photodetector Array , 2013, IEEE Photonics Journal.

[52]  Pedro A. G. Tizei,et al.  Raman spectroscopy and chemometrics for on‐line control of glucose fermentation by Saccharomyces cerevisiae , 2012, Biotechnology progress.

[53]  B. Schmauss,et al.  Line shapes of near-infrared DFB and VCSEL diode lasers under the influence of system back reflections , 2012 .

[54]  Arkady Major,et al.  Grating-Stabilized External Cavity Diode Lasers for Raman Spectroscopy—A Review , 2012 .

[55]  A. Driessen,et al.  Raman spectroscopy with an integrated arrayed-waveguide grating. , 2011, Optics letters.

[56]  R. Mouras,et al.  Raman spectroscopy and CARS microscopy of stem cells and their derivatives. , 2011, Journal of Raman spectroscopy : JRS.

[57]  Nicholas R. Abu-Absi,et al.  Real time monitoring of multiple parameters in mammalian cell culture bioreactors using an in-line Raman spectroscopy probe. , 2011, Biotechnology and bioengineering.

[58]  I. V. Kotov,et al.  Study of pixel area variations in fully depleted thick CCD , 2010, Astronomical Telescopes + Instrumentation.

[59]  S. Sakai,et al.  In vivo measurement of the water content in the dermis by confocal Raman spectroscopy , 2010, Skin research and technology : official journal of International Society for Bioengineering and the Skin (ISBS) [and] International Society for Digital Imaging of Skin (ISDIS) [and] International Society for Skin Imaging.

[60]  Alistair Elfick,et al.  Raman Spectroscopy and Related Techniques in Biomedicine , 2010, Sensors.

[61]  R. Scholten,et al.  Mode stability of external cavity diode lasers. , 2009, Applied optics.

[62]  Emily A. Smith,et al.  Determination of glucose and ethanol after enzymatic hydrolysis and fermentation of biomass using Raman spectroscopy. , 2009, Analytica chimica acta.

[63]  Olaf Hollricher,et al.  High-resolution, high-speed confocal Raman imaging , 2008 .

[64]  Roger Smith,et al.  Pixel area variation in CCDs and implications for precision photometry , 2008, Astronomical Telescopes + Instrumentation.

[65]  A. Mahadevan-Jansen,et al.  Raman microspectroscopy for skin cancer detection in vitro. , 2008, Journal of biomedical optics.

[66]  P. Stroeve,et al.  Drug Delivery Systems , 2008, Methods in Molecular Biology™.

[67]  Heinz-Detlef Kronfeldt,et al.  Reliable operation of 785 nm DFB diode lasers for rapid Raman spectroscopy , 2007, SPIE LASE.

[68]  H. Matsushita,et al.  Optical isolator independent of input polarization direction utilizing a quarter-wave plate , 2005, Digest of the LEOS Summer Topical Meetings, 2005..

[69]  Abigail S Haka,et al.  Real-time Raman system for in vivo disease diagnosis. , 2005, Journal of biomedical optics.

[70]  J. Westerhuis,et al.  Quantitative Raman reaction monitoring using the solvent as internal standard. , 2005, Analytical chemistry.

[71]  Urs von Stockar,et al.  On‐line monitoring of Phaffia rhodozyma fed‐batch process with in situ dispersive raman spectroscopy , 2003, Biotechnology and bioengineering.

[72]  A. Dayan,et al.  Defining a tolerable concentration of methanol in alcoholic drinks , 2001, Human & experimental toxicology.

[73]  S. Sivakesava,et al.  Monitoring a bioprocess for ethanol production using FT-MIR and FT-Raman spectroscopy , 2001, Journal of Industrial Microbiology and Biotechnology.

[74]  H. Bruining,et al.  In vivo confocal Raman microspectroscopy of the skin: noninvasive determination of molecular concentration profiles. , 2001, The Journal of investigative dermatology.

[75]  H. Edwards,et al.  A novel miniature confocal microscope/Raman spectrometer system for biomolecular analysis on future Mars missions after Antarctic trials , 2000 .

[76]  R. Dasari,et al.  Prospects for in vivo Raman spectroscopy. , 2000, Physics in medicine and biology.

[77]  S. Prawer,et al.  Temperature dependence of the first-order Raman phonon line of diamond , 2000 .

[78]  H. Heaton Interferometric Raman spectrometry with fiber waveguides. , 1997, Applied optics.

[79]  Charles K. Mann,et al.  Raman measurement of glucose in bioreactor materials , 1997, Photonics West - Biomedical Optics.

[80]  B. Shore,et al.  High-efficiency fused-silica transmission gratings. , 1997, Optics letters.

[81]  William E. Blass,et al.  Instrumental considerations , 1996 .

[82]  S. Angel,et al.  Evaluation of External-Cavity Diode Lasers for Raman Spectroscopy , 1995 .

[83]  S. Albin,et al.  Elimination of Mode Hopping and Frequency Hysteresis in Diode Laser Raman Spectroscopy: The Advantages of a Distributed Bragg Reflector Diode Laser for Raman Excitation , 1995 .

[84]  S. Angel,et al.  THE UTILIZATION OF DIODE LASERS FOR RAMAN SPECTROSCOPY , 1995 .

[85]  Klaus Petermann,et al.  External optical feedback phenomena in semiconductor lasers , 1995, Other Conferences.

[86]  M. Myrick,et al.  Raman spectroscopy with a low-cost imaging CCD array , 1994 .

[87]  Bernard Chalmond,et al.  PSF estimation for image deblurring , 1991, CVGIP Graph. Model. Image Process..

[88]  Thomas B. Shope,et al.  The Direct Analysis of Fermentation Products by Raman Spectroscopy , 1987 .

[89]  R. O. Miles,et al.  Spectral Characteristics of Semiconductor Lasers with Optical Feedback , 1982 .

[90]  H. Kuwahara,et al.  An optical isolator for semiconductor lasers in the 0.8 μm range , 1981 .

[91]  Robert J. Gove,et al.  CMOS image sensor technology advances for mobile devices , 2020 .

[92]  Lianqing Zhu,et al.  High-Sensitive Smartphone-Based Raman System Based on Cloud Network Architecture , 2019, IEEE Journal of Selected Topics in Quantum Electronics.

[93]  J. Bones,et al.  Staying alive! Sensors used for monitoring cell health in bioreactors. , 2018, Talanta.

[94]  Jürgen Popp,et al.  The application of Raman spectroscopy for the detection and identification of microorganisms , 2016 .

[95]  Kyle C. Doty,et al.  What can Raman spectroscopy do for criminalistics , 2016 .

[96]  M. Bonner Denton,et al.  The Impact of Array Detectors on Raman Spectroscopy. , 2007 .

[97]  Guidance for Industry PAT — A Framework for Innovative Pharmaceutical Development , Manufacturing , and Quality Assurance , 2004 .

[98]  Lumír Sommer,et al.  Analytical Absorption Spectrophotometry in the Visible and Ultraviolet: The Principles , 1990 .

[99]  J. Galloway A Review of the , 1901 .