Chaos control applied to cardiac rhythms represented by ECG signals

The control of irregular or chaotic heartbeats is a key issue in cardiology. In this regard, chaos control techniques represent a good alternative since they suggest treatments different from those traditionally used. This paper deals with the application of the extended time-delayed feedback control method to stabilize pathological chaotic heart rhythms. Electrocardiogram (ECG) signals are employed to represent the cardiovascular behavior. A mathematical model is employed to generate ECG signals using three modified Van der Pol oscillators connected with time delay couplings. This model provides results that qualitatively capture the general behavior of the heart. Controlled ECG signals show the ability of the strategy either to control or to suppress the chaotic heart dynamics generating less-critical behaviors.

[1]  Ali Khaki-Sedigh,et al.  ADAPTIVE CONTROL OF CHAOS IN CARDIAC ARRHYTHMIA , 2009 .

[2]  Jeff Walden,et al.  Ventricular response in atrial fibrillation: random or deterministic? , 1999, American journal of physiology. Heart and circulatory physiology.

[3]  Alexander L. Fradkov,et al.  Control of chaos: methods and applications in mechanics , 2006, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[4]  J. D. Farmer,et al.  Chaotic attractors of an infinite-dimensional dynamical system , 1982 .

[5]  A. Wolf,et al.  Determining Lyapunov exponents from a time series , 1985 .

[6]  Ying-Cheng Lai,et al.  Controlling chaos , 1994 .

[7]  Martienssen,et al.  Controlling chaos experimentally in systems exhibiting large effective Lyapunov exponents. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[8]  L. J. Leon,et al.  Spatiotemporal evolution of ventricular fibrillation , 1998, Nature.

[9]  Balth van der Pol Jun Docts. Sc.,et al.  LXXII. The heartbeat considered as a relaxation oscillation, and an electrical model of the heart , 1928 .

[10]  Marcelo A. Savi,et al.  Chaos and order in biomedical rhythms , 2005 .

[11]  A Garfinkel,et al.  Controlling cardiac chaos. , 1992, Science.

[12]  Marcelo A. Savi,et al.  CONTROLLING CHAOS IN A NONLINEAR PENDULUM , 2003 .

[13]  Alexander L. Fradkov,et al.  Control of Chaos: Methods and Applications. II. Applications , 2004 .

[14]  S. R. Lopes,et al.  Rhythm synchronization and chaotic modulation of coupled Van der Pol oscillators in a model for the heartbeat , 2004 .

[15]  R. Pérez,et al.  Bifurcation and chaos in a periodically stimulated cardiac oscillator , 1983 .

[16]  Alvin Shrier,et al.  Nonlinear dynamics, chaos and complex cardiac arrhythmias , 1987, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[17]  Kestutis Pyragas,et al.  Delayed feedback control of chaos , 2006, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[18]  Auerbach,et al.  Exploring chaotic motion through periodic orbits. , 1987, Physical review letters.

[19]  Marcelo A. Savi,et al.  Comparative analysis of chaos control methods: A mechanical system case study , 2011 .

[20]  Panagiotis D. Christofides,et al.  Studies on feedback control of cardiac alternans , 2008, Comput. Chem. Eng..

[21]  W J Cunningham,et al.  A NONLINEAR DIFFERENTIAL-DIFFERENCE EQUATION OF GROWTH. , 1954, Proceedings of the National Academy of Sciences of the United States of America.

[22]  Celso Grebogi,et al.  Using small perturbations to control chaos , 1993, Nature.

[23]  A Garfinkel,et al.  Chaos control of cardiac arrhythmias. , 1995, Trends in cardiovascular medicine.

[24]  S. Boccaletti,et al.  The control of chaos: theory and applications , 2000 .

[25]  J. Zebrowski,et al.  Modeling cardiac pacemakers with relaxation oscillators , 2004 .

[26]  B B Lerman,et al.  Nonlinear-dynamical arrhythmia control in humans , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[27]  André Longtin,et al.  Power spectra and dynamical invariants for delay-differential and difference equations , 1998 .

[28]  Kestutis Pyragas Continuous control of chaos by self-controlling feedback , 1992 .

[29]  M. Savi,et al.  Chaos control applied to heart rhythm dynamics , 2011 .

[30]  D. T. Kaplan,et al.  Is fibrillation chaos? , 1990, Circulation research.

[31]  Marcelo A. Savi,et al.  Controlling chaos in a nonlinear pendulum using an extended time-delayed feedback control method , 2009 .

[32]  Pagavathigounder Balasubramaniam,et al.  Synchronization of a novel fractional order stretch-twist-fold (STF) flow chaotic system and its application to a new authenticated encryption scheme (AES) , 2014, Nonlinear Dynamics.

[33]  Marcelo A. Savi,et al.  An analysis of heart rhythm dynamics using a three-coupled oscillator model , 2009 .

[34]  Marcelo A. Savi,et al.  A multiparameter chaos control method applied to maps , 2008 .

[35]  Kestutis Pyragas Control of chaos via extended delay feedback , 1995 .

[36]  Marcelo A. Savi,et al.  A multiparameter chaos control method based on OGY approach , 2009 .

[37]  Pagavathigounder Balasubramaniam,et al.  Feedback synchronization of the fractional order reverse butterfly-shaped chaotic system and its application to digital cryptography , 2013, Nonlinear Dynamics.

[38]  Manuel J. López,et al.  Computer simulation and method for heart rhythm control based on ECG signal reference tracking , 2010 .

[39]  Tomasz Kapitaniak,et al.  Continuous control and synchronization in chaotic systems , 1995 .

[40]  Gauthier,et al.  Stabilizing unstable periodic orbits in fast dynamical systems. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[41]  Alexander L. Fradkov,et al.  Control of Chaos : Methods and Applications , 2003 .

[42]  L. Glass,et al.  DYNAMIC CONTROL OF CARDIAC ALTERNANS , 1997 .

[43]  Ekaterina Pavlovskaia,et al.  Bifurcation Control of a Parametric Pendulum , 2012, Int. J. Bifurc. Chaos.

[44]  Schouten,et al.  Experimental control of a chaotic pendulum with unknown dynamics using delay coordinates. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[45]  Ditto,et al.  Evidence for determinism in ventricular fibrillation. , 1995, Physical review letters.

[46]  Nicholas J. Kaiser,et al.  Physiologically inspired cardiac scaffolds for tailored in vivo function and heart regeneration , 2015, Biomedical materials.

[47]  J. CHAOTIC ATTRACTORS OF AN INFINITE-DIMENSIONAL DYNAMICAL SYSTEM , 2002 .