Local Hierarchical h-Refinements in IgA Based on Generalized B-Splines
暂无分享,去创建一个
[1] P. Sattayatham,et al. GB-splines of arbitrary order , 1999 .
[2] Tom Lyche,et al. Polynomial splines over locally refined box-partitions , 2013, Comput. Aided Geom. Des..
[3] Hendrik Speleers,et al. THB-splines: The truncated basis for hierarchical splines , 2012, Comput. Aided Geom. Des..
[4] Larry L. Schumaker,et al. Spline functions - basic theory, Third Edition , 2007, Cambridge mathematical library.
[5] David R. Forsey,et al. Hierarchical B-spline refinement , 1988, SIGGRAPH.
[6] Hendrik Speleers,et al. Isogeometric analysis with Powell–Sabin splines for advection–diffusion–reaction problems , 2012 .
[7] Carl de Boor,et al. A Practical Guide to Splines , 1978, Applied Mathematical Sciences.
[8] Marie-Laurence Mazure,et al. Chebyshev-Bernstein bases , 1999, Comput. Aided Geom. Des..
[9] Juan Manuel Peña,et al. Shape preserving alternatives to the rational Bézier model , 2001, Comput. Aided Geom. Des..
[10] Tom Lyche,et al. Interpolation with Exponential B-Splines in Tension , 1993, Geometric Modelling.
[11] B. Simeon,et al. Adaptive isogeometric analysis by local h-refinement with T-splines , 2010 .
[12] Marie-Laurence Mazure,et al. How to build all Chebyshevian spline spaces good for geometric design? , 2011, Numerische Mathematik.
[13] Hendrik Speleers,et al. From NURBS to NURPS geometries , 2013 .
[14] Carla Manni,et al. Quasi-interpolation in isogeometric analysis based on generalized B-splines , 2010, Comput. Aided Geom. Des..
[15] Hendrik Speleers,et al. Strongly stable bases for adaptively refined multilevel spline spaces , 2014, Adv. Comput. Math..
[16] Carla Manni,et al. Isogeometric analysis in advection-diffusion problems: Tension splines approximation , 2011, J. Comput. Appl. Math..
[17] Thomas J. R. Hughes,et al. Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .
[18] Eitan Grinspun,et al. Natural hierarchical refinement for finite element methods , 2003 .
[19] Carla Manni,et al. Generalized B-splines as a tool in Isogeometric Analysis , 2011 .
[20] Miljenko Marušić,et al. Sharp error bounds for interpolating splines in tension , 1995 .
[21] Hendrik Speleers,et al. On the Local Approximation Power of Quasi-Hierarchical Powell-Sabin Splines , 2008, MMCS.
[22] P. Gould. Introduction to Linear Elasticity , 1983 .
[23] Paolo Costantini,et al. Curve and surface construction using variable degree polynomial splines , 2000, Comput. Aided Geom. Des..
[24] Guozhao Wang,et al. Unified and extended form of three types of splines , 2008 .
[25] Tom Lyche,et al. On a class of weak Tchebycheff systems , 2005, Numerische Mathematik.
[26] C. Manni,et al. Geometric Construction of Generalized Cubic Splines , 2006 .
[27] J. M. Peña,et al. Critical Length for Design Purposes and Extended Chebyshev Spaces , 2003 .
[28] John A. Evans,et al. Isogeometric analysis using T-splines , 2010 .
[29] T. Hughes,et al. Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .
[30] Hendrik Speleers,et al. Quasi-hierarchical Powell-Sabin B-splines , 2009, Comput. Aided Geom. Des..
[31] Eitan Grinspun,et al. CHARMS: a simple framework for adaptive simulation , 2002, ACM Trans. Graph..
[32] Randolph E. Bank,et al. A posteriori error estimates based on hierarchical bases , 1993 .
[33] B. Simeon,et al. A hierarchical approach to adaptive local refinement in isogeometric analysis , 2011 .