Local Hierarchical h-Refinements in IgA Based on Generalized B-Splines

In this paper we construct multilevel representations in terms of a hierarchy of tensor-product generalized B-splines. These representations combine the positive properties of a non-rational model with the possibility of dealing with local refinements. We discuss their use in the context of isogeometric analysis.

[1]  P. Sattayatham,et al.  GB-splines of arbitrary order , 1999 .

[2]  Tom Lyche,et al.  Polynomial splines over locally refined box-partitions , 2013, Comput. Aided Geom. Des..

[3]  Hendrik Speleers,et al.  THB-splines: The truncated basis for hierarchical splines , 2012, Comput. Aided Geom. Des..

[4]  Larry L. Schumaker,et al.  Spline functions - basic theory, Third Edition , 2007, Cambridge mathematical library.

[5]  David R. Forsey,et al.  Hierarchical B-spline refinement , 1988, SIGGRAPH.

[6]  Hendrik Speleers,et al.  Isogeometric analysis with Powell–Sabin splines for advection–diffusion–reaction problems , 2012 .

[7]  Carl de Boor,et al.  A Practical Guide to Splines , 1978, Applied Mathematical Sciences.

[8]  Marie-Laurence Mazure,et al.  Chebyshev-Bernstein bases , 1999, Comput. Aided Geom. Des..

[9]  Juan Manuel Peña,et al.  Shape preserving alternatives to the rational Bézier model , 2001, Comput. Aided Geom. Des..

[10]  Tom Lyche,et al.  Interpolation with Exponential B-Splines in Tension , 1993, Geometric Modelling.

[11]  B. Simeon,et al.  Adaptive isogeometric analysis by local h-refinement with T-splines , 2010 .

[12]  Marie-Laurence Mazure,et al.  How to build all Chebyshevian spline spaces good for geometric design? , 2011, Numerische Mathematik.

[13]  Hendrik Speleers,et al.  From NURBS to NURPS geometries , 2013 .

[14]  Carla Manni,et al.  Quasi-interpolation in isogeometric analysis based on generalized B-splines , 2010, Comput. Aided Geom. Des..

[15]  Hendrik Speleers,et al.  Strongly stable bases for adaptively refined multilevel spline spaces , 2014, Adv. Comput. Math..

[16]  Carla Manni,et al.  Isogeometric analysis in advection-diffusion problems: Tension splines approximation , 2011, J. Comput. Appl. Math..

[17]  Thomas J. R. Hughes,et al.  Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .

[18]  Eitan Grinspun,et al.  Natural hierarchical refinement for finite element methods , 2003 .

[19]  Carla Manni,et al.  Generalized B-splines as a tool in Isogeometric Analysis , 2011 .

[20]  Miljenko Marušić,et al.  Sharp error bounds for interpolating splines in tension , 1995 .

[21]  Hendrik Speleers,et al.  On the Local Approximation Power of Quasi-Hierarchical Powell-Sabin Splines , 2008, MMCS.

[22]  P. Gould Introduction to Linear Elasticity , 1983 .

[23]  Paolo Costantini,et al.  Curve and surface construction using variable degree polynomial splines , 2000, Comput. Aided Geom. Des..

[24]  Guozhao Wang,et al.  Unified and extended form of three types of splines , 2008 .

[25]  Tom Lyche,et al.  On a class of weak Tchebycheff systems , 2005, Numerische Mathematik.

[26]  C. Manni,et al.  Geometric Construction of Generalized Cubic Splines , 2006 .

[27]  J. M. Peña,et al.  Critical Length for Design Purposes and Extended Chebyshev Spaces , 2003 .

[28]  John A. Evans,et al.  Isogeometric analysis using T-splines , 2010 .

[29]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[30]  Hendrik Speleers,et al.  Quasi-hierarchical Powell-Sabin B-splines , 2009, Comput. Aided Geom. Des..

[31]  Eitan Grinspun,et al.  CHARMS: a simple framework for adaptive simulation , 2002, ACM Trans. Graph..

[32]  Randolph E. Bank,et al.  A posteriori error estimates based on hierarchical bases , 1993 .

[33]  B. Simeon,et al.  A hierarchical approach to adaptive local refinement in isogeometric analysis , 2011 .