Lipschitzian Regularity of Minimizers for Optimal Control Problems with Control-Affine Dynamics
暂无分享,去创建一个
[1] On the Larentiev Phenomenon for Optimal Control Problems with Second-Order Dynamics , 1996 .
[2] F. Clarke. The Maximum Principle under Minimal Hypotheses , 1976 .
[3] S. Bernstein. Sur les équations du calcul des variations , 1912 .
[4] Richard B. Vinter,et al. A regularity theory for variational problems with higher order derivatives , 1990 .
[5] F. Clarke. Methods of dynamic and nonsmooth optimization , 1989 .
[6] Singiresu S. Rao,et al. Optimization Theory and Applications , 1980, IEEE Transactions on Systems, Man, and Cybernetics.
[7] C. B. Morrey. Multiple Integrals in the Calculus of Variations , 1966 .
[8] Giuseppe Buttazzo,et al. Lipschitz regularity for minimizers of integral functionals with highly discontinuous integrands , 1989 .
[9] Richard B. Vinter,et al. Regularity properties of optimal controls , 1990 .
[10] Andrey Sarychev,et al. First- and Second-Order Integral Functionals of the Calculus of Variations which Exhibit the Lavrentiev Phenomenon , 1997 .
[11] R. V. Gamkrelidze,et al. Principles of optimal control theory , 1977 .
[12] Richard B. Vinter,et al. Regularity properties of solutions to the basic problem in the calculus of variations , 1985 .
[13] M. C. Carathéodory. Sur une méthode directe du calcul des variations , 1908 .
[14] Héctor J. Sussmann,et al. A strong version of the maximum principle under weak hypotheses , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.
[15] Existence and regularity in the small in the calculus of variations , 1985 .
[16] Variational Problems with Lipschitzian Minimizers , 1989 .