Engineering inhibitory proteins with InSiPS: the in-silico protein synthesizer

Engineered proteins are synthetic novel proteins (not found in nature) that are designed to fulfill a predetermined biological function. Such proteins can be used as molecular markers, inhibitory agents, or drugs. For example, a synthetic protein could bind to a critical protein of a pathogen, thereby inhibiting the function of the target protein and potentially reducing the impact of the pathogen. In this paper we present the In-Silico Protein Synthesizer (InSiPS), a massively parallel computational tool for the IBM Blue Gene/Q that is aimed at designing inhibitory proteins. More precisely, InSiPS designs proteins that are predicted to interact with a given target protein (and may inhibit the target's cellular functions) while leaving non-target proteins unaffected (to minimize side-effects). As proof-of-concepts, two InSiPS designed proteins have been synthesized in the lab and their inhibitory properties have been experimentally verified through wet-lab experimentation.

[1]  R. Karp,et al.  From the Cover : Conserved patterns of protein interaction in multiple species , 2005 .

[2]  María Martín,et al.  Activities at the Universal Protein Resource (UniProt) , 2013, Nucleic Acids Res..

[3]  See-Kiong Ng,et al.  InterDom: a database of putative interacting protein domains for validating predicted protein interactions and complexes , 2003, Nucleic Acids Res..

[4]  Feiping Nie,et al.  Predicting Protein-Protein Interactions from Multimodal Biological Data Sources via Nonnegative Matrix Tri-Factorization , 2012, RECOMB.

[5]  Sharmila Anishetty,et al.  A matrix based algorithm for Protein-Protein Interaction prediction using Domain-Domain Associations. , 2013, Journal of theoretical biology.

[6]  R. B. Azevedo,et al.  On the Immortality of Television Sets: “Function” in the Human Genome According to the Evolution-Free Gospel of ENCODE , 2013, Genome biology and evolution.

[7]  M. Gerstein,et al.  Assessing the limits of genomic data integration for predicting protein networks. , 2005, Genome research.

[8]  A. Blais,et al.  Cooperation between myogenic regulatory factors and SIX family transcription factors is important for myoblast differentiation , 2010, Nucleic acids research.

[9]  Douglas J Winton,et al.  Lineage selection and plasticity in the intestinal crypt , 2014, Current opinion in cell biology.

[10]  Andreas Wagner,et al.  Evolutionary constraints permeate large metabolic networks , 2009, BMC Evolutionary Biology.

[11]  Paul B Rainey,et al.  Unraveling adaptive evolution: how a single point mutation affects the protein coregulation network , 2006, Nature Genetics.

[12]  I. Nishii,et al.  Idaten Is a New Cold-Inducible Transposon of Volvox carteri That Can Be Used for Tagging Developmentally Important Genes , 2008, Genetics.

[13]  M. Sternberg,et al.  Prediction of protein-protein interactions by docking methods. , 2002, Current opinion in structural biology.

[14]  T. Hunter,et al.  The protein kinase family: conserved features and deduced phylogeny of the catalytic domains. , 1988, Science.

[15]  Tatsuya Akutsu,et al.  Prediction of Protein-Protein Interaction Strength Using Domain Features with Supervised Regression , 2014, TheScientificWorldJournal.

[16]  Hareton K. N. Leung,et al.  A Highly Efficient Approach to Protein Interactome Mapping Based on Collaborative Filtering Framework , 2015, Scientific Reports.

[17]  Jerzy Tiuryn,et al.  A Probabilistic Model of Neutral and Selective Dynamics of Protein Network Evolution , 2013, J. Comput. Biol..

[18]  Steven M. Lewis,et al.  Anchored Design of Protein-Protein Interfaces , 2011, PloS one.

[19]  Gary D Bader,et al.  Domain‐mediated protein interaction prediction: From genome to network , 2012, FEBS letters.

[20]  M. Gerstein,et al.  A Bayesian Networks Approach for Predicting Protein-Protein Interactions from Genomic Data , 2003, Science.

[21]  Anton J. Enright,et al.  Protein interaction maps for complete genomes based on gene fusion events , 1999, Nature.

[22]  Zhu-Hong You,et al.  Using manifold embedding for assessing and predicting protein interactions from high-throughput experimental data , 2010, Bioinform..

[23]  Jean-Luc Poyet,et al.  Drug-Like Protein–Protein Interaction Modulators: Challenges and Opportunities for Drug Discovery and Chemical Biology , 2014, Molecular informatics.

[24]  Xiaoming Liu,et al.  SLPA: Uncovering Overlapping Communities in Social Networks via a Speaker-Listener Interaction Dynamic Process , 2011, 2011 IEEE 11th International Conference on Data Mining Workshops.

[25]  Christopher J. Lee,et al.  Inferring protein domain interactions from databases of interacting proteins , 2005, Genome Biology.

[26]  R. Ozawa,et al.  A comprehensive two-hybrid analysis to explore the yeast protein interactome , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[27]  Hod Lipson,et al.  The evolutionary origins of modularity , 2012, Proceedings of the Royal Society B: Biological Sciences.

[28]  K. Chou,et al.  Predicting protein-protein interactions from sequences in a hybridization space. , 2006, Journal of proteome research.

[29]  Yoshihide Hayashizaki,et al.  Construction of reliable protein-protein interaction networks with a new interaction generality measure , 2003, Bioinform..

[30]  Michael A. Langston,et al.  Combinatorial Genetic Regulatory Network Analysis Tools for High Throughput Transcriptomic Data , 2005, Systems Biology and Regulatory Genomics.

[31]  D. Kirk,et al.  A Kinesin, InvA, Plays an Essential Role in Volvox Morphogenesis , 2003, Cell.

[32]  Javad Zahiri,et al.  Computational Prediction of Protein–Protein Interaction Networks: Algo-rithms and Resources , 2013, Current genomics.

[33]  Bin Li,et al.  Protein docking prediction using predicted protein-protein interface , 2012, BMC Bioinformatics.

[34]  D. Hardie,et al.  AMP-activated/SNF1 protein kinases: conserved guardians of cellular energy , 2007, Nature Reviews Molecular Cell Biology.

[35]  Keiko Ikeda,et al.  Six family genes control the proliferation and differentiation of muscle satellite cells. , 2010, Experimental cell research.

[36]  Luonan Chen,et al.  Inferring protein interactions from experimental data by association probabilistic method , 2006, Proteins.

[37]  Zhen Ji,et al.  Large-Scale Protein-Protein Interactions Detection by Integrating Big Biosensing Data with Computational Model , 2014, BioMed research international.

[38]  Yoshihide Hayashizaki,et al.  Interaction generality, a measurement to assess the reliability of a protein-protein interaction. , 2002, Nucleic acids research.

[39]  D. Kirk,et al.  glsA, a Volvox gene required for asymmetric division and germ cell specification, encodes a chaperone-like protein. , 1999, Development.

[40]  Roded Sharan,et al.  Rearrangements and Expansion of the Domain Content in Proteins Frequently Increase the Protein Connectivity in the Protein–Protein Interaction Network , 2009 .

[41]  Geoffrey M. Cooper,et al.  Regulation of Protein Function , 2000 .

[42]  M. Vidal,et al.  Protein interaction mapping in C. elegans using proteins involved in vulval development. , 2000, Science.

[43]  Teresa M. Przytycka,et al.  DOMINE: a database of protein domain interactions , 2007, Nucleic Acids Res..

[44]  J. Mandell,et al.  Measurement of solvent accessibility at protein-protein interfaces. , 2005, Methods in molecular biology.

[45]  H. Herzel,et al.  Is there a bias in proteome research? , 2001, Genome research.

[46]  Joel S. Bader,et al.  Precision and recall estimates for two-hybrid screens , 2008, Bioinform..

[47]  Wei Chen,et al.  A game-theoretic framework to identify overlapping communities in social networks , 2010, Data Mining and Knowledge Discovery.

[48]  Amparo Querol,et al.  Metabolomic Comparison of Saccharomyces cerevisiae and the Cryotolerant Species S. bayanus var. uvarum and S. kudriavzevii during Wine Fermentation at Low Temperature , 2013, PloS one.

[49]  Jeffery G Saven,et al.  Computational protein design: structure, function and combinatorial diversity. , 2007, Current opinion in chemical biology.

[50]  Ozlem Keskin,et al.  PRISM: a web server and repository for prediction of protein–protein interactions and modeling their 3D complexes , 2014, Nucleic Acids Res..

[51]  Boleslaw K. Szymanski,et al.  LabelRank: A stabilized label propagation algorithm for community detection in networks , 2013, 2013 IEEE 2nd Network Science Workshop (NSW).

[52]  Piyali Chatterjee,et al.  PPI_SVM: Prediction of protein-protein interactions using machine learning, domain-domain affinities and frequency tables , 2011, Cellular & Molecular Biology Letters.

[53]  Loris Nanni,et al.  An ensemble of K-local hyperplanes for predicting protein-protein interactions , 2006, Bioinform..

[54]  T. Lane,et al.  Exploiting Amino Acid Composition for Predicting Protein-Protein Interactions , 2009, PloS one.

[55]  T. Jukes,et al.  The neutral theory of molecular evolution. , 2000, Genetics.

[56]  Mark Gerstein,et al.  The Importance of Bottlenecks in Protein Networks: Correlation with Gene Essentiality and Expression Dynamics , 2007, PLoS Comput. Biol..

[57]  T. S. Evans,et al.  Clique graphs and overlapping communities , 2010, ArXiv.

[58]  Xiang-Sun Zhang,et al.  Improving accuracy of protein-protein interaction prediction by considering the converse problem for sequence representation , 2011, BMC Bioinformatics.

[59]  Zhiping Weng,et al.  Protein–protein docking benchmark version 4.0 , 2010, Proteins.

[60]  M. Kimura Evolutionary Rate at the Molecular Level , 1968, Nature.

[61]  Lin Gao,et al.  ppiPre: predicting protein-protein interactions by combining heterogeneous features , 2013, BMC Systems Biology.

[62]  William M Gallagher,et al.  Truncated HER2: implications for HER2-targeted therapeutics. , 2011, Drug discovery today.

[63]  S. Fields,et al.  A novel genetic system to detect protein–protein interactions , 1989, Nature.

[64]  Baldomero Oliva,et al.  Prediction of protein-protein interactions using distant conservation of sequence patterns and structure relationships , 2005, Bioinform..

[65]  Balázs Papp,et al.  Systems-biology approaches for predicting genomic evolution , 2011, Nature Reviews Genetics.

[66]  Gesine Reinert,et al.  Predicting and Validating Protein Interactions Using Network Structure , 2008, PLoS Comput. Biol..

[67]  Robert B. Russell,et al.  3did: interacting protein domains of known three-dimensional structure , 2004, Nucleic Acids Res..

[68]  S. Eddy The ENCODE project: Missteps overshadowing a success , 2013, Current Biology.

[69]  Robert B. Russell,et al.  InterPreTS: protein Interaction Prediction through Tertiary Structure , 2003, Bioinform..

[70]  A. Barabasi,et al.  The human disease network , 2007, Proceedings of the National Academy of Sciences.

[71]  Sophia Tsoka,et al.  Prediction of protein interactions: metabolic enzymes are frequently involved in gene fusion , 2000, Nature Genetics.

[72]  N. R. Friedman,et al.  The VARL Gene Family and the Evolutionary Origins of the Master Cell-Type Regulatory Gene, regA, in Volvox carteri , 2007, Journal of Molecular Evolution.

[73]  T. M. Murali,et al.  Computational prediction of host-pathogen protein-protein interactions , 2007, ISMB/ECCB.

[74]  B. Snel,et al.  The identification of functional modules from the genomic association of genes , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[75]  D. Vitkup,et al.  Network properties of genes harboring inherited disease mutations , 2008, Proceedings of the National Academy of Sciences.

[76]  R. Overbeek,et al.  The use of gene clusters to infer functional coupling. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[77]  Frederick P. Roth,et al.  Predicting co-complexed protein pairs using genomic and proteomic data integration , 2004, BMC Bioinformatics.

[78]  William Stafford Noble,et al.  Large-scale prediction of protein-protein interactions from structures , 2010, BMC Bioinformatics.

[79]  Quan Pan,et al.  Prediction of Protein-Protein Interaction Using Distance Frequency of Amino Acids Grouped with their Physicochemical Properties , 2011, 2011 Sixth International Conference on Bio-Inspired Computing: Theories and Applications.

[80]  J. Jurka,et al.  Genomic Analysis of Organismal Complexity in the Multicellular Green Alga Volvox carteri , 2010, Science.

[81]  David M. Goodstein,et al.  Phytozome: a comparative platform for green plant genomics , 2011, Nucleic Acids Res..

[82]  Darby Tien-Hao Chang,et al.  Predicting protein-protein interactions in unbalanced data using the primary structure of proteins , 2010, BMC Bioinformatics.

[83]  Piero Fariselli,et al.  A neural network method to improve prediction of protein-protein interaction sites in heterocomplexes , 2003, 2003 IEEE XIII Workshop on Neural Networks for Signal Processing (IEEE Cat. No.03TH8718).

[84]  Amparo Querol,et al.  Fermentative stress adaptation of hybrids within the Saccharomyces sensu stricto complex. , 2008, International journal of food microbiology.

[85]  Michael B. Eisen,et al.  The Awesome Power of Yeast Evolutionary Genetics: New Genome Sequences and Strain Resources for the Saccharomyces sensu stricto Genus , 2011, G3: Genes | Genomes | Genetics.

[86]  Adam Godzik,et al.  Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences , 2006, Bioinform..

[87]  Jeffery G Saven,et al.  Computational protein design: Advances in the design and redesign of biomolecular nanostructures. , 2010, Current opinion in colloid & interface science.

[88]  Yuri Matsuzaki,et al.  Highly precise protein-protein interaction prediction based on consensus between template-based and de novo docking methods , 2013, BMC Proceedings.

[89]  Christophe Pélabon,et al.  Integrated phenotypes: understanding trait covariation in plants and animals , 2014, Philosophical Transactions of the Royal Society B: Biological Sciences.

[90]  Caterina Grillo,et al.  ERp57/GRP58: A protein with multiple functions , 2011, Cellular & Molecular Biology Letters.

[91]  Andrew Chatr-aryamontri,et al.  DOMINO: a database of domain–peptide interactions , 2006, Nucleic Acids Res..

[92]  Reza Salavati,et al.  Sequence-based prediction of protein-protein interactions by means of codon usage , 2008, Genome Biology.

[93]  Sheng-You Huang,et al.  Search strategies and evaluation in protein-protein docking: principles, advances and challenges. , 2014, Drug discovery today.

[94]  Michael A. Langston,et al.  Innovative Computational Methods for Transcriptomic Data Analysis: A Case Study in the Use of FPT for Practical Algorithm Design and Implementation , 2008, Comput. J..

[95]  Mong-Li Lee,et al.  Increasing confidence of protein interactomes using network topological metrics , 2006, Bioinform..

[96]  R. Lambiotte,et al.  Line graphs, link partitions, and overlapping communities. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[97]  Giulio Cossu,et al.  Stem cell therapies for muscle disorders. , 2012, Current opinion in neurology.

[98]  Keith C. C. Chan,et al.  Discovering Variable-Length Patterns in Protein Sequences for Protein-Protein Interaction Prediction , 2015, IEEE Transactions on NanoBioscience.

[99]  Lin-Yu Lu,et al.  The role of BRCA1 in DNA damage response , 2010, Protein & Cell.

[100]  Shuai Li,et al.  A MapReduce based parallel SVM for large-scale predicting protein-protein interactions , 2014, Neurocomputing.

[101]  Miguel C. Teixeira,et al.  Genome-Wide Identification of Saccharomyces cerevisiae Genes Required for Maximal Tolerance to Ethanol , 2009, Applied and Environmental Microbiology.

[102]  Yanjun Qi,et al.  Random Forest Similarity for Protein-Protein Interaction Prediction from Multiple Sources , 2004, Pacific Symposium on Biocomputing.

[103]  Mao-Bin Hu,et al.  Detect overlapping and hierarchical community structure in networks , 2008, ArXiv.

[104]  Leslie G. Valiant,et al.  Evolvability , 2009, JACM.

[105]  A. Valencia,et al.  In silico two‐hybrid system for the selection of physically interacting protein pairs , 2002, Proteins.

[106]  M. Pigliucci Phenotypic integration: studying the ecology and evolution of complex phenotypes , 2003 .

[107]  Lisa N Kinch,et al.  Evaluation of free modeling targets in CASP11 and ROLL , 2016, Proteins.

[108]  J Skolnick,et al.  Defrosting the frozen approximation: PROSPECTOR— A new approach to threading , 2001, Proteins.

[109]  David T. Jones THREADER : Protein Sequence Threading by Double Dynamic Programming , 1998 .

[110]  Dong-Soo Han,et al.  A Computational Model for Predicting Protein Interactions Based on Multidomain Collaboration , 2012, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[111]  Jean-Loup Faulon,et al.  Predicting protein-protein interactions using signature products , 2005, Bioinform..

[112]  Hui Lu,et al.  MULTIPROSPECTOR: An algorithm for the prediction of protein–protein interactions by multimeric threading , 2002, Proteins.

[113]  Zhu-Hong You,et al.  Predicting Protein-Protein Interactions from Primary Protein Sequences Using a Novel Multi-Scale Local Feature Representation Scheme and the Random Forest , 2015, PloS one.

[114]  Sune Lehmann,et al.  Link communities reveal multiscale complexity in networks , 2009, Nature.

[115]  Steve Gregory,et al.  Finding overlapping communities in networks by label propagation , 2009, ArXiv.

[116]  Adam Amos-Binks,et al.  PROTEOME-SCALE PROTEIN-PROTEIN INTERACTION SITE PREDICTION AND NOVEL MOTIF DISCOVERY USING RE-OCCURRING POLYPEPTIDE SEQUENCES , 2010 .

[117]  BirlutiuAdriana,et al.  A Bayesian framework for combining protein and network topology information for predicting protein-protein interactions , 2015 .

[118]  Sean R. Collins,et al.  Conservation and Rewiring of Functional Modules Revealed by an Epistasis Map in Fission Yeast , 2008, Science.

[119]  Manuel Llinás,et al.  A New System for Comparative Functional Genomics of Saccharomyces Yeasts , 2013, Genetics.

[120]  Fumiyoshi Abe,et al.  Tryptophan Permease Gene TAT2 Confers High-Pressure Growth in Saccharomyces cerevisiae , 2000, Molecular and Cellular Biology.

[121]  S. Henikoff,et al.  Amino acid substitution matrices from protein blocks. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[122]  Albert Mas,et al.  Analysis of low temperature-induced genes (LTIG) in wine yeast during alcoholic fermentation. , 2012, FEMS yeast research.

[123]  Xue-wen Chen,et al.  Sequence-based prediction of protein interaction sites with an integrative method , 2009, Bioinform..

[124]  G Vida,et al.  The origin of eukaryotes: the difference between prokaryotic and eukaryotic cells , 1999, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[125]  James R. Knight,et al.  A comprehensive analysis of protein–protein interactions in Saccharomyces cerevisiae , 2000, Nature.

[126]  Ashkan Golshani,et al.  Phosphatase Complex Pph3/Psy2 Is Involved in Regulation of Efficient Non-Homologous End-Joining Pathway in the Yeast Saccharomyces cerevisiae , 2014, PloS one.

[127]  Andrew Emili,et al.  eSGA: E. coli Synthetic Genetic Array analysis , 2008 .

[128]  Hui Wang,et al.  Efficient prediction of human protein-protein interactions at a global scale , 2014, BMC Bioinformatics.

[129]  B. Tropp,et al.  Protein Function , 2018, Definitions.

[130]  See-Kiong Ng,et al.  Integrative approach for computationally inferring protein domain interactions , 2003, SAC '03.

[131]  Inna Dubchak,et al.  The genome portal of the Department of Energy Joint Genome Institute: 2014 updates , 2013, Nucleic Acids Res..

[132]  Alison G. Tebo,et al.  Protein design: toward functional metalloenzymes. , 2014, Chemical reviews.

[133]  D. Eisenberg,et al.  Detecting protein function and protein-protein interactions from genome sequences. , 1999, Science.

[134]  Doina Caragea,et al.  Structural Prediction of Protein-Protein Interactions in Saccharomyces cerevisiae , 2007, 2007 IEEE 7th International Symposium on BioInformatics and BioEngineering.

[135]  Panos M. Pardalos,et al.  Efficient Prediction of Protein-Protein Interactions Using Sequence Information , 2010, 2010 International Conference on Complex, Intelligent and Software Intensive Systems.

[136]  Jure Leskovec,et al.  Empirical comparison of algorithms for network community detection , 2010, WWW '10.

[137]  A. Valencia,et al.  Similarity of phylogenetic trees as indicator of protein-protein interaction. , 2001, Protein engineering.

[138]  Julian Zubek,et al.  Evaluation of Machine Learning Algorithms on Protein-Protein Interactions , 2013, ICMMI.

[139]  Jennifer M. Rust,et al.  The BioGRID Interaction Database , 2011 .

[140]  W. DeGrado,et al.  Protein design, a minimalist approach. , 1989, Science.

[141]  Mark A. Ragan,et al.  Gene Ontology-driven inference of protein-protein interactions using inducers , 2011 .

[142]  Alex Wong,et al.  Evolution of protein-coding genes in Drosophila. , 2008, Trends in genetics : TIG.

[143]  Costas D Maranas,et al.  Recent advances in computational protein design. , 2011, Current opinion in structural biology.

[144]  Alexandre Bonvin Coming to peace with protein complexes? 5th CAPRI evaluation meeting, April 17–19th 2013 – Utrecht , 2013, Proteins.

[145]  David A. Gough,et al.  Predicting protein-protein interactions from primary structure , 2001, Bioinform..

[146]  Lubert Stryer,et al.  Eukaryotic Protein Synthesis Differs from Prokaryotic Protein Synthesis Primarily in Translation Initiation , 2002 .

[147]  Tony Pawson,et al.  The mammalian-membrane two-hybrid assay (MaMTH) for probing membrane-protein interactions in human cells , 2014, Nature Methods.

[148]  D. Eisenberg,et al.  Assigning protein functions by comparative genome analysis: protein phylogenetic profiles. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[149]  Darby Tien-Hao Chang,et al.  Predicting the protein-protein interactions using primary structures with predicted protein surface , 2010, BMC Bioinformatics.

[150]  D. Hardie,et al.  CBS domains form energy-sensing modules whose binding of adenosine ligands is disrupted by disease mutations. , 2004, The Journal of clinical investigation.

[151]  Jiangning Song,et al.  Can simple codon pair usage predict protein-protein interaction? , 2012, Molecular bioSystems.

[152]  Anna Tramontano,et al.  Critical assessment of methods of protein structure prediction (CASP) — round x , 2014, Proteins.

[153]  Yungki Park,et al.  Revisiting the negative example sampling problem for predicting protein-protein interactions , 2011, Bioinform..

[154]  Haiyuan Yu,et al.  Detecting overlapping protein complexes in protein-protein interaction networks , 2012, Nature Methods.

[155]  J. Matthews,et al.  Protein-protein interactions in human disease. , 2005, Current opinion in structural biology.

[156]  A. Valencia,et al.  Prediction of protein--protein interaction sites in heterocomplexes with neural networks. , 2002, European journal of biochemistry.

[157]  Ziv Bar-Joseph,et al.  Evaluation of different biological data and computational classification methods for use in protein interaction prediction , 2006, Proteins.

[158]  Leon Danon,et al.  Comparing community structure identification , 2005, cond-mat/0505245.

[159]  Rémy Cazabet,et al.  Detection of Overlapping Communities in Dynamical Social Networks , 2010, 2010 IEEE Second International Conference on Social Computing.

[160]  John W Pinney,et al.  Making the right connections: biological networks in the light of evolution , 2009, BioEssays : news and reviews in molecular, cellular and developmental biology.

[161]  A. Zanghellini,et al.  de novo computational enzyme design. , 2014, Current opinion in biotechnology.

[162]  William Stafford Noble,et al.  Learning to predict protein-protein interactions from protein sequences , 2003, Bioinform..

[163]  Willi Hock,et al.  Lecture Notes in Economics and Mathematical Systems , 1981 .

[164]  Boleslaw K. Szymanski,et al.  Towards Linear Time Overlapping Community Detection in Social Networks , 2012, PAKDD.

[165]  J. R. Green,et al.  Global investigation of protein–protein interactions in yeast Saccharomyces cerevisiae using re-occurring short polypeptide sequences , 2008, Nucleic acids research.

[166]  A. Valencia,et al.  Conserved Clusters of Functionally Related Genes in Two Bacterial Genomes , 1997, Journal of Molecular Evolution.

[167]  B. Snel,et al.  Conservation of gene order: a fingerprint of proteins that physically interact. , 1998, Trends in biochemical sciences.

[168]  B. Honig,et al.  Structure-based prediction of protein-protein interactions on a genome-wide scale , 2012, Nature.

[169]  Boleslaw K. Szymanski,et al.  Community detection using a neighborhood strength driven Label Propagation Algorithm , 2011, 2011 IEEE Network Science Workshop.

[170]  D. T. Jones,et al.  A new approach to protein fold recognition , 1992, Nature.

[171]  Andrea Lancichinetti,et al.  Detecting the overlapping and hierarchical community structure in complex networks , 2008, 0802.1218.

[172]  Dongsoo Han,et al.  A domain combination based probabilistic framework for protein-protein interaction prediction. , 2003, Genome informatics. International Conference on Genome Informatics.

[173]  Jaime G. Carbonell,et al.  Active learning for human protein-protein interaction prediction , 2010, BMC Bioinformatics.

[174]  A. Emili,et al.  Interaction network containing conserved and essential protein complexes in Escherichia coli , 2005, Nature.

[175]  Ujjwal Maulik,et al.  Ensemble learning prediction of protein-protein interactions using proteins functional annotations. , 2014, Molecular bioSystems.

[176]  Xingming Zhao,et al.  Predicting protein–protein interactions from protein sequences using meta predictor , 2010, Amino Acids.

[177]  Michael S. Kay,et al.  Protein Design of an HIV-1 Entry Inhibitor , 2001, Science.

[178]  Chunguang Zhou,et al.  Predicting protein-protein interactions based on BP neural network , 2007, 2007 IEEE International Conference on Bioinformatics and Biomedicine Workshops.

[179]  M. Gerstein,et al.  Genomic analysis of essentiality within protein networks. , 2004, Trends in genetics : TIG.

[180]  Santo Fortunato,et al.  Community detection in graphs , 2009, ArXiv.

[181]  Shao-Wu Zhang,et al.  Prediction of Protein–Protein Interaction with Pairwise Kernel Support Vector Machine , 2014, International journal of molecular sciences.

[182]  Anton J. Enright,et al.  Functional associations of proteins in entire genomes by means of exhaustive detection of gene fusions , 2001, Genome Biology.

[183]  Aidong Zhang,et al.  A topological measurement for weighted protein interaction network , 2005, 2005 IEEE Computational Systems Bioinformatics Conference (CSB'05).

[184]  Alfonso Valencia,et al.  Towards the prediction of protein interaction partners using physical docking , 2011, Molecular systems biology.

[185]  A. Valencia,et al.  Computational methods for the prediction of protein interactions. , 2002, Current opinion in structural biology.

[186]  Zhengwei Zhu,et al.  CD-HIT: accelerated for clustering the next-generation sequencing data , 2012, Bioinform..

[187]  M. Gerstein,et al.  Annotation transfer between genomes: protein-protein interologs and protein-DNA regulogs. , 2004, Genome research.

[188]  Dragomir R. Radev,et al.  Identifying gene-disease associations using centrality on a literature mined gene-interaction network , 2008, ISMB.

[189]  Ziheng Yang PAML 4: phylogenetic analysis by maximum likelihood. , 2007, Molecular biology and evolution.

[190]  Joël Janin,et al.  Welcome to CAPRI: A Critical Assessment of PRedicted Interactions , 2002 .

[191]  Santo Fortunato,et al.  Finding Statistically Significant Communities in Networks , 2010, PloS one.

[192]  Ashkan Golshani,et al.  Computational methods for predicting protein-protein interactions. , 2008, Advances in biochemical engineering/biotechnology.

[193]  T. Vicsek,et al.  Weighted network modules , 2007, cond-mat/0703706.

[194]  Ozlem Keskin,et al.  PRISM: protein interactions by structural matching , 2005, Nucleic Acids Res..

[195]  B. Séraphin,et al.  A generic protein purification method for protein complex characterization and proteome exploration , 1999, Nature Biotechnology.

[196]  Franco J. Vizeacoumar,et al.  Interaction landscape of membrane-protein complexes in Saccharomyces cerevisiae , 2012, Nature.

[197]  Tanya Z. Berardini,et al.  The Arabidopsis Information Resource (TAIR): improved gene annotation and new tools , 2011, Nucleic Acids Res..

[198]  Cheng-Yan Kao,et al.  Ortholog-based protein-protein interaction prediction and its application to inter-species interactions , 2008, BMC Bioinformatics.

[199]  Sourav Bandyopadhyay,et al.  Evolutionarily Conserved Herpesviral Protein Interaction Networks , 2009, PLoS pathogens.

[200]  E. Sprinzak,et al.  Correlated sequence-signatures as markers of protein-protein interaction. , 2001, Journal of molecular biology.

[201]  Nazar Zaki,et al.  Protein-protein interaction based on pairwise similarity , 2009, BMC Bioinformatics.

[202]  Yungki Park,et al.  Critical assessment of sequence-based protein-protein interaction prediction methods that do not require homologous protein sequences , 2009, BMC Bioinformatics.

[203]  Fabio Vazquez,et al.  Yeast population dynamics during prefermentative cold soak of Cabernet Sauvignon and Malbec wines. , 2015, International journal of food microbiology.

[204]  Fergal Reid,et al.  Detecting highly overlapping community structure by greedy clique expansion , 2010, KDD 2010.

[205]  Burkhard Rost,et al.  Evolutionary profiles improve protein-protein interaction prediction from sequence , 2015, Bioinform..

[206]  T. Ideker,et al.  Differential network biology , 2012, Molecular systems biology.

[207]  Hong-Soog Kim,et al.  PreSPI: design and implementation of protein-protein interaction prediction service system. , 2004, Genome informatics. International Conference on Genome Informatics.

[208]  A. F. Bennett,et al.  The Molecular Diversity of Adaptive Convergence , 2012, Science.

[209]  R. Michod,et al.  Triassic origin and early radiation of multicellular volvocine algae , 2009, Proceedings of the National Academy of Sciences.

[210]  Ashkan Golshani,et al.  Binding Site Prediction for Protein-Protein Interactions and Novel Motif Discovery using Re-occurring Polypeptide Sequences , 2011, BMC Bioinformatics.

[211]  W. Doolittle Is junk DNA bunk? A critique of ENCODE , 2013, Proceedings of the National Academy of Sciences.

[212]  M. Rudnicki,et al.  Satellite cells: the architects of skeletal muscle. , 2014, Current topics in developmental biology.

[213]  K Fidelis,et al.  A large‐scale experiment to assess protein structure prediction methods , 1995, Proteins.

[214]  B. Kuhlman,et al.  A comparison of successful and failed protein interface designs highlights the challenges of designing buried hydrogen bonds , 2013, Protein science : a publication of the Protein Society.

[215]  Wan Kyu Kim,et al.  Large scale statistical prediction of protein-protein interaction by potentially interacting domain (PID) pair. , 2002, Genome informatics. International Conference on Genome Informatics.

[216]  Huaiyu Mi,et al.  The InterPro protein families database: the classification resource after 15 years , 2014, Nucleic Acids Res..

[217]  Kara Dolinski,et al.  The BioGRID Interaction Database: 2011 update , 2010, Nucleic Acids Res..

[218]  Robert D. Finn,et al.  InterPro: the integrative protein signature database , 2008, Nucleic Acids Res..

[219]  Le Hoa Tan,et al.  Recent advances in protein–protein interaction prediction: experimental and computational methods , 2011, Expert opinion on drug discovery.

[220]  T. F. Hansen Is modularity necessary for evolvability? Remarks on the relationship between pleiotropy and evolvability. , 2003, Bio Systems.

[221]  William Stafford Noble,et al.  Choosing negative examples for the prediction of protein-protein interactions , 2006, BMC Bioinformatics.

[222]  Dayou Liu,et al.  A Markov random walk under constraint for discovering overlapping communities in complex networks , 2011, ArXiv.

[223]  Brian Raught,et al.  Advances in protein complex analysis using mass spectrometry , 2005, The Journal of physiology.

[224]  Illés J. Farkas,et al.  CFinder: locating cliques and overlapping modules in biological networks , 2006, Bioinform..

[225]  R. Becklin,et al.  An integrated strategy for the discovery of drug targets by the analysis of protein–protein interactions , 2004 .

[226]  Oliviero Carugo,et al.  Computational approaches to protein-protein interaction , 2004, Journal of Structural and Functional Genomics.

[227]  Jean-Philippe Vert,et al.  A tree kernel to analyse phylogenetic profiles , 2002, ISMB.

[228]  E. van Nimwegen,et al.  Accurate Prediction of Protein–protein Interactions from Sequence Alignments Using a Bayesian Method , 2022 .

[229]  Juwen Shen,et al.  Predicting protein–protein interactions based only on sequences information , 2007, Proceedings of the National Academy of Sciences.

[230]  Alex W. Wilkinson,et al.  Computational prediction of protein-protein interactions , 2012 .

[231]  Toshiyuki Sato,et al.  MEGADOCK 3.0: a high-performance protein-protein interaction prediction software using hybrid parallel computing for petascale supercomputing environments , 2013, Source Code for Biology and Medicine.

[232]  Luonan Chen,et al.  Proteome-wide prediction of protein-protein interactions from high-throughput data , 2012, Protein & Cell.

[233]  William Stafford Noble,et al.  Kernel methods for predicting protein-protein interactions , 2005, ISMB.

[234]  Masatoshi Nei,et al.  The neutral theory of molecular evolution in the genomic era. , 2010, Annual review of genomics and human genetics.

[235]  Dong-Soo Han,et al.  PreSPI: a domain combination based prediction system for protein-protein interaction. , 2004, Nucleic acids research.

[236]  Roberto A Chica,et al.  Protein engineering in the 21st century , 2015, Protein science : a publication of the Protein Society.

[237]  Andrei L. Turinsky,et al.  A Census of Human Soluble Protein Complexes , 2012, Cell.

[238]  Ashkan Golshani,et al.  Large-Scale Protein-Protein Interaction Detection Approaches: Past, Present and Future , 2008 .

[239]  D. Eisenberg,et al.  A combined algorithm for genome-wide prediction of protein function , 1999, Nature.

[240]  Réka Albert,et al.  Conserved network motifs allow protein-protein interaction prediction , 2004, Bioinform..

[241]  M. O. Dayhoff,et al.  22 A Model of Evolutionary Change in Proteins , 1978 .

[242]  Ziheng Yang,et al.  INDELible: A Flexible Simulator of Biological Sequence Evolution , 2009, Molecular biology and evolution.

[243]  Ashkan Golshani,et al.  MP-PIPE: a massively parallel protein-protein interaction prediction engine , 2011, ICS '11.

[244]  F. Dilworth,et al.  Six1 Regulates MyoD Expression in Adult Muscle Progenitor Cells , 2013, PloS one.

[245]  Albert Chan,et al.  PIPE: a protein-protein interaction prediction engine based on the re-occurring short polypeptide sequences between known interacting protein pairs , 2006, BMC Bioinformatics.

[246]  I. Nishii,et al.  Controlled Enlargement of the Glycoprotein Vesicle Surrounding a Volvox Embryo Requires the InvB Nucleotide-Sugar Transporter and Is Required for Normal Morphogenesis[W] , 2009, The Plant Cell Online.

[247]  F. Cohen,et al.  Co-evolution of proteins with their interaction partners. , 2000, Journal of molecular biology.

[248]  Yu Zong Chen,et al.  prediction of protein-protein interactions , 2004 .

[249]  C. Su,et al.  Bacterial multidrug efflux transporters. , 2014, Annual review of biophysics.

[250]  Menglong Li,et al.  PRED_PPI: a server for predicting protein-protein interactions based on sequence data with probability assignment , 2010, BMC Research Notes.

[251]  Mark Culp,et al.  Predicting whole genome protein interaction networks from primary sequence data in model and non-model organisms using ENTS , 2013, BMC Genomics.

[252]  Sandhya Rani,et al.  Human Protein Reference Database—2009 update , 2008, Nucleic Acids Res..

[253]  Pina M Fratamico,et al.  Shiga Toxin-Producing Escherichia coli , 2003 .

[254]  I. King Jordan,et al.  Natural selection governs local, but not global, evolutionary gene coexpression networks in Caenorhabditis elegans , 2008, BMC Syst. Biol..

[255]  Michelle R. Arkin,et al.  Small-molecule inhibitors of protein–protein interactions: progressing towards the dream , 2004, Nature Reviews Drug Discovery.

[256]  Bin Liu,et al.  SPPS: A Sequence-Based Method for Predicting Probability of Protein-Protein Interaction Partners , 2012, PloS one.

[257]  Krzysztof Fidelis,et al.  CASP10 results compared to those of previous CASP experiments , 2014, Proteins.

[258]  T. Vicsek,et al.  Uncovering the overlapping community structure of complex networks in nature and society , 2005, Nature.

[259]  Bonnie Berger,et al.  Struct2Net: a web service to predict protein–protein interactions using a structure-based approach , 2010, Nucleic Acids Res..

[260]  Boleslaw K. Szymanski,et al.  Overlapping community detection in networks: The state-of-the-art and comparative study , 2011, CSUR.

[261]  Nai-Yang Deng,et al.  Sequence-based protein-protein interaction prediction via support vector machine , 2010, J. Syst. Sci. Complex..

[262]  De-Shuang Huang,et al.  Predicting protein–protein interactions from sequence using correlation coefficient and high-quality interaction dataset , 2010, Amino Acids.

[263]  Hongbin Shen,et al.  Large-scale prediction of human protein-protein interactions from amino acid sequence based on latent topic features. , 2010, Journal of proteome research.

[264]  Kenji Mizuguchi,et al.  Homology-based prediction of interactions between proteins using Averaged One-Dependence Estimators , 2014, BMC Bioinformatics.

[265]  Charlotte Collins,et al.  Direct Isolation of Satellite Cells for Skeletal Muscle Regeneration , 2005, Science.

[266]  M. King,et al.  Linkage of early-onset familial breast cancer to chromosome 17q21. , 1990, Science.

[267]  Dmitrij Frishman,et al.  MIPS: a database for genomes and protein sequences , 1999, Nucleic Acids Res..

[268]  Gavin C. Conant,et al.  A Conserved Mammalian Protein Interaction Network , 2013, PloS one.

[269]  Xianglong Tang,et al.  Protein-Protein Interactions Prediction Based on Iterative Clique Extension with Gene Ontology Filtering , 2014, TheScientificWorldJournal.

[270]  Yangchao Huang,et al.  Simple sequence-based kernels do not predict protein-protein interactions , 2010, Bioinform..

[271]  Anton J. Enright,et al.  Mapping Functional Associations in the Entire Genome of Drosophila melanogaster Using Fusion Analysis , 2003, Comparative and functional genomics.

[272]  Ker-Chau Li,et al.  Human protein-protein interaction prediction by a novel sequence-based co-evolution method: co-evolutionary divergence , 2012, Bioinform..

[273]  Ashkan Golshani,et al.  Short Co-occurring Polypeptide Regions Can Predict Global Protein Interaction Maps , 2012, Scientific Reports.

[274]  Patrick Aloy,et al.  Interrogating protein interaction networks through structural biology , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[275]  Ziv Bar-Joseph,et al.  A mixture of feature experts approach for protein-protein interaction prediction , 2007, BMC Bioinformatics.

[276]  Jeremy Miller,et al.  Identifying disease-specific genes based on their topological significance in protein networks , 2009, BMC Syst. Biol..

[277]  E. Birney,et al.  Pfam: the protein families database , 2013, Nucleic Acids Res..

[278]  Annette W. Coleman,et al.  Volvox: Molecular-Genetic Origins of Multicellularity and Cellular Differentiation. , 1998 .

[279]  Zhi-Ping Liu,et al.  Inferring a protein interaction map of Mycobacterium tuberculosis based on sequences and interologs , 2012, BMC Bioinformatics.

[280]  Michael A. Langston,et al.  Graph algorithms for integrated biological analysis, with applications to type 1 diabetes data , 2009 .

[281]  T. Aas,et al.  Specific P53 mutations are associated with de novo resistance to doxorubicin in breast cancer patients , 1996, Nature Medicine.

[282]  Emmanuel D Levy,et al.  Evolution and dynamics of protein interactions and networks. , 2008, Current opinion in structural biology.

[283]  R. Michod,et al.  Evolution of Complexity in the Volvocine Algae: Transitions in Individuality Through Darwin's Eye , 2008, Evolution; international journal of organic evolution.

[284]  Richard C. Gardner,et al.  Transcriptional response of Saccharomyces cerevisiae to low temperature during wine fermentation , 2015, Antonie van Leeuwenhoek.

[285]  Subhadip Basu,et al.  Multi-level machine learning prediction of protein–protein interactions in Saccharomyces cerevisiae , 2015, PeerJ.

[286]  Yanzhi Guo,et al.  Using support vector machine combined with auto covariance to predict protein–protein interactions from protein sequences , 2008, Nucleic acids research.

[287]  David A. Gough,et al.  Whole-proteome interaction mining , 2003, Bioinform..

[288]  Mei Liu,et al.  Prediction of protein-protein interactions using random decision forest framework , 2005, Bioinform..

[289]  R. Michod Darwinian Dynamics: Evolutionary Transitions in Fitness and Individuality , 1999 .

[290]  S. Siva Sathya,et al.  Evolutionary algorithms for de novo drug design - A survey , 2015, Appl. Soft Comput..

[291]  S. Wuchty Topology and weights in a protein domain interaction network – a novel way to predict protein interactions , 2006, BMC Genomics.

[292]  Adam J. Smith,et al.  The Database of Interacting Proteins: 2004 update , 2004, Nucleic Acids Res..

[293]  Lise Getoor,et al.  Predicting Protein-Protein Interactions Using Relational Features , 2007 .

[294]  D. Kirk,et al.  A twelve-step program for evolving multicellularity and a division of labor. , 2005, BioEssays : news and reviews in molecular, cellular and developmental biology.

[295]  Jing Chen,et al.  Disease candidate gene identification and prioritization using protein interaction networks , 2009, BMC Bioinformatics.

[296]  Kara Dolinski,et al.  The BioGRID interaction database: 2015 update , 2014, Nucleic Acids Res..