Experimental bifurcation diagram of a solid state laser with optical injection

A method is presented for the automatic construction of an experimental bifurcation diagram of an optically injected solid state laser. From measured time series of laser output intensity, different identifiers of aspects of the dynamics are derived. Combinations of these identifiers are then used to characterize different possible bifurcations. The resulting experimental bifurcation diagram in the plane of injection strength versus detuning includes saddle-node, Hopf, period-doubling and torus bifurcations. It is shown to agree well with a theoretical bifurcation analysis of a corresponding rate equation model.

[1]  T. Simpson,et al.  Mapping the nonlinear dynamics of a distributed feedback semiconductor laser subject to external optical injection , 2003 .

[2]  Thomas Fordell,et al.  Experimental and numerical intensity time series of an optically injected solid state laser , 2005 .

[3]  Numerical stability maps of an optically injected semiconductor laser , 2004 .

[4]  Daan Lenstra,et al.  The dynamical complexity of optically injected semiconductor lasers , 2005 .

[5]  Sebastian Wieczorek,et al.  Accumulating regions of winding periodic orbits in optically driven lasers , 2002 .

[6]  Bernd Krauskopf Bifurcation analysis of laser systems , 2001 .

[7]  Steven H. Strogatz,et al.  Nonlinear Dynamics and Chaos , 2024 .

[8]  Topological signature of deterministic chaos in short nonstationary signals from an optical parametric oscillator , 2004 .

[9]  Daan Lenstra,et al.  Global quantitative predictions of complex laser dynamics. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[10]  Maps of the dynamics of an optically injected solid-state laser (8 pages) , 2005 .

[11]  S. Eriksson Dependence of the experimental stability diagram of an optically injected semiconductor laser on the laser current , 2002 .

[12]  Willy Govaerts,et al.  MATCONT: A MATLAB package for numerical bifurcation analysis of ODEs , 2003, TOMS.

[13]  K. Tai,et al.  Nonlinear dynamics induced by external optical injection in semiconductor lasers , 1997 .

[14]  A. Lindberg,et al.  Periodic oscillation within the chaotic region in a semiconductor laser subjected to external optical injection. , 2001, Optics letters.

[15]  Y. Kuznetsov Elements of Applied Bifurcation Theory , 2023, Applied Mathematical Sciences.

[16]  Thomas Erneux,et al.  Injection-locked semiconductor laser dynamics from large to small detunings , 1999, Photonics West.

[17]  Sheng-Kwang Hwang,et al.  Dynamical characteristics of an optically injected semiconductor laser , 2000 .

[18]  Govind P. Agrawal,et al.  Laser instabilities: a modern perspective , 1998 .

[19]  K. Alan Shore,et al.  Unlocking Dynamical Diversity: Optical Feedback Effects on Semiconductor Lasers , 2005 .

[20]  M. Adams,et al.  Stability maps of injection-locked laser diodes using the largest Lyapunov exponent , 2003 .

[21]  A. Lindberg,et al.  Observations on the dynamics of semiconductor lasers subjected to external optical injection , 2002 .

[22]  T. Fordell,et al.  Modulation and the linewidth enhancement factor of a diode-pumped Nd:YVO4 laser. , 2005, Optics letters.

[23]  Vassilios Kovanis,et al.  Period‐doubling route to chaos in a semiconductor laser subject to optical injection , 1994 .