The ins and outs of CO2

Highlight CO2 supply to Rubisco can involve diffusive CO2 fluxes or a CO2 concentrating mechanism. The mechanisms involve CO2 loss in photorespiration or by leakage, respectively.

[1]  B. Colman,et al.  The active uptake of carbon dioxide by the unicellular green algae Chlorella saccharophila and C. ellipsoidea , 1991 .

[2]  P. Goodwin Put out the light, and then put out the light. , 1968, Nursing times.

[3]  S. Kranz,et al.  Carbon acquisition by Trichodesmium: the effect of pCO2 and diurnal changes , 2009 .

[4]  J Gutknecht,et al.  Diffusion of carbon dioxide through lipid bilayer membranes. Effects of carbonic anhydrase, bicarbonate, and unstirred layers , 1977, The Journal of general physiology.

[5]  N. McDowell,et al.  Function of Nicotiana tabacum Aquaporins as Chloroplast Gas Pores Challenges the Concept of Membrane CO2 Permeability[W] , 2008, The Plant Cell Online.

[6]  G. Cannon,et al.  The Carboxysome Shell Is Permeable to Protons , 2010, Journal of bacteriology.

[7]  A. Cousins,et al.  Carbon isotope discrimination as a tool to explore C4 photosynthesis. , 2014, Journal of experimental botany.

[8]  J. Raven CO2-concentrating mechanisms: a direct role for thylakoid lumen acidification? , 1997 .

[9]  M. Badger,et al.  A Model for HCO(3) Accumulation and Photosynthesis in the Cyanobacterium Synechococcus sp: Theoretical Predictions and Experimental Observations. , 1985, Plant physiology.

[10]  A. Kaplan,et al.  A model for inorganic carbon fluxes and photosynthesis in cyanobacterial carboxysomes , 1991 .

[11]  M. D. Hatch,et al.  Form of inorganic carbon involved as a product and as an inhibitor of c(4) Acid decarboxylases operating in c(4) photosynthesis. , 1987, Plant physiology.

[12]  A. Tanaka,et al.  SLC4 family transporters in a marine diatom directly pump bicarbonate from seawater , 2013, Proceedings of the National Academy of Sciences.

[13]  Jodi N. Young,et al.  Low temperature reduces the energetic requirement for the CO2 concentrating mechanism in diatoms. , 2015, The New phytologist.

[14]  J. Raven,et al.  Photosynthetic carbon assimilation by Crassula helmsii , 1995, Oecologia.

[15]  T. Green,et al.  A comparison of photosynthesis in two thalloid liverworts. , 1982 .

[16]  Diana Walker,et al.  Mechanistic interpretation of carbon isotope discrimination by marine macroalgae and seagrasses. , 2002, Functional plant biology : FPB.

[17]  J. Randerson,et al.  Primary production of the biosphere: integrating terrestrial and oceanic components , 1998, Science.

[18]  M. J. Merrett,et al.  Inorganic-carbon transport in some marine eukaryotic microalgae , 1989, Planta.

[19]  N. A. Walker,et al.  Bicarbonate assimilation by fresh-water charophytes and higher plants: I. Membrane transport of bicarbonate ions is not proven , 1980, The Journal of Membrane Biology.

[20]  H. Griffiths,et al.  Bundle-sheath leakiness in C4 photosynthesis: a careful balancing act between CO2 concentration and assimilation. , 2014, Journal of experimental botany.

[21]  Alessio Gizzi,et al.  Effects of Pacing Site and Stimulation History on Alternans Dynamics and the Development of Complex Spatiotemporal Patterns in Cardiac Tissue , 2013, Front. Physiol..

[22]  Luis M. Lubián,et al.  Active transport of CO2 by three species of marine microalgae , 2000 .

[23]  Ecophysiology of photosynthesis in macroalgae , 2012, Photosynthesis Research.

[24]  P. Pohl,et al.  Intrinsic CO2 permeability of cell membranes and potential biological relevance of CO2 channels. , 2011, Chemphyschem : a European journal of chemical physics and physical chemistry.

[25]  B. Colman,et al.  The localization of active inorganic carbon transport at the plasma membrane in Chlorella ellipsoidea , 1991 .

[26]  G. Briggs Bicarbonate Ions as a Source of Carbon Dioxide for Photosynthesis , 1959 .

[27]  D. Sültemeyer,et al.  The CO2 permeability of the plasma membrane of Chlamydomonas reinhardtii: mass-spectrometric 18O-exchange measurements from 13C18O2 in suspensions of carbonic anhydrase-loaded plasma-membrane vesicles , 1996, Planta.

[28]  J. Raven ENDOGENOUS INORGANIC CARBON SOURCES IN PLANT HOTOSYNTHESIS , 1972 .

[29]  Alison M. Smith,et al.  Distribution of photorespiratory enzymes between bundle-sheath and mesophyll cells in leaves of the C3−C4 intermediate species Moricandia arvensis (L.) DC , 1988, Planta.

[30]  G. Edwards,et al.  The efficiency of the CO2-concentrating mechanism during single-cell C4 photosynthesis. , 2012, Plant, cell & environment.

[31]  N. A. Mir,et al.  HCO3− and CO2 leakage from Synechococcus UTEX 625 , 1996 .

[32]  A. Kaplan,et al.  Inorganic Carbon Fluxes and Photosynthesis in Cyanobacteria — A Quantitative Model , 1987 .

[33]  G. Espie,et al.  CO2 uptake and transport in leaf mesophyll cells , 1985 .

[34]  J. Beardall CO2 ACCUMULATION BY CHLORELLA SACCHAROPHILA (CHLOROPHYCEAE) AT LOW EXTERNAL pH: EVIDENCE FOR ACTIVE TRANSPORT OF INORGANIC CARBON AT THE CHLOROPLAST ENVELOPE 1 , 1981 .

[35]  M. Badger,et al.  Inhibition by proton buffers of photosynthetic utilization of bicarbonate in Chara corallina , 1985 .

[36]  U. Riebesell,et al.  Carbon acquisition of marine phytoplankton: Effect of photoperiod length , 2006 .

[37]  J. Raven ENDOGENOUS INORGANIC CARBON SOURCES IN PLANT PHOTOSYNTHESIS. I. OCCURRENCE OF THE DARK RESPIRATORY PATHWAYS IN ILLUMINATED GREEN CELLS , 1972 .

[38]  H. Griffiths,et al.  To concentrate or ventilate? Carbon acquisition, isotope discrimination and physiological ecology of early land plant life forms , 2008, Philosophical Transactions of the Royal Society B: Biological Sciences.

[39]  Stephen C. Maberly,et al.  Freshwater angiosperm carbon concentrating mechanisms: processes and patterns. , 2002, Functional plant biology : FPB.

[40]  N. A. Mir,et al.  Influx and efflux of inorganic carbon in Synechococcus UTEX625 , 1996 .

[41]  M. Maeshima,et al.  Effect of overexpression of radish plasma membrane aquaporins on water-use efficiency, photosynthesis and growth of Eucalyptus trees. , 2010, Tree physiology.

[42]  M. Badger,et al.  Light and CO2 do not affect the mesophyll conductance to CO2 diffusion in wheat leaves. , 2009, Journal of experimental botany.

[43]  A. Kaplan,et al.  Photosynthesizing marine microorganisms can constitute a source of CO2 rather than a sink , 1998 .

[44]  P. Boyd,et al.  Inorganic carbon uptake by Southern Ocean phytoplankton , 2008 .

[45]  J. Holtum,et al.  CO2 is the inorganic carbon substrate of NADP malic enzymes from Zea mays and from wheat germ. , 1987, European journal of biochemistry.

[46]  C. Hurd,et al.  High prevalence of diffusive uptake of CO2 by macroalgae in a temperate subtidal ecosystem , 2015, Photosynthesis Research.

[47]  Aaron Kaplan,et al.  Massive light-dependent cycling of inorganic carbon between oxygenic photosynthetic microorganisms and their surroundings , 2004, Photosynthesis Research.

[48]  Ichiro Terashima,et al.  Resistances along the CO2 diffusion pathway inside leaves. , 2009, Journal of experimental botany.

[49]  H. Fock,et al.  Uptake of HCO3− and CO2 in Cells and Chloroplasts from the Microalgae Chlamydomonas reinhardtii and Dunaliella tertiolecta , 1998 .

[50]  J. Raven EXOGENOUS INORGANIC CARBON SOURCES IN PLANT PHOTOSYNTHESIS , 1970 .

[51]  R. Kaldenhoff,et al.  The Arabidopsis thaliana aquaporin AtPIP1;2 is a physiologically relevant CO₂ transport facilitator. , 2011, The Plant journal : for cell and molecular biology.

[52]  S. Maeda,et al.  Novel gene products associated with NdhD3/D4‐containing NDH‐1 complexes are involved in photosynthetic CO2 hydration in the cyanobacterium, Synechococcus sp. PCC7942 , 2002, Molecular microbiology.

[53]  F. Morel,et al.  Active uptake of bicarbonate by diatoms , 1997, Nature.

[54]  J. Raven,et al.  6 – PROCESSES LIMITING PHOTOSYNTHETIC CONDUCTANCE , 1981 .

[55]  A. Larkum,et al.  Driving Forces for Bicarbonate Transport in the Cyanobacterium Synechococcus R-2 (PCC 7942) , 1996, Plant physiology.

[56]  Peter Pohl,et al.  Carbon Dioxide Transport through Membranes* , 2008, Journal of Biological Chemistry.

[57]  R. Furbank,et al.  CO(2) Concentrating Mechanism of C(4) Photosynthesis: Permeability of Isolated Bundle Sheath Cells to Inorganic Carbon. , 1989, Plant physiology.

[58]  R. Lew,et al.  Active uptake of CO2 during photosynthesis in the green alga Eremosphaera viridis is mediated by a CO2-ATPase , 1992, Planta.

[59]  M. Badger,et al.  Involvement of plasmalemmasomes and carbonic anhydrase in photosynthetic utilization of bicarbonate in Chara corallina , 1985 .

[60]  C. Supuran,et al.  CO2 permeability of cell membranes is regulated by membrane cholesterol and protein gas channels , 2012, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[61]  R. Lew,et al.  CO2 uptake mechanism in Eremosphaera viridis , 1998 .

[62]  P. Tortell,et al.  Isotope disequilibrium and mass spectrometric studies of inorganic carbon acquisition by phytoplankton , 2007 .

[63]  M. Badger,et al.  Measurement of CO2 and HCO3− fluxes in cyanobacteria and microalgae during steady‐state photosynthesis , 1994 .

[64]  F. Morel,et al.  INAUGURAL ARTICLE by a Recently Elected Academy Member:Efficiency of the CO2-concentrating mechanism of diatoms , 2011 .

[65]  D. Campbell,et al.  Physiological characterization and light response of the CO2-concentrating mechanism in the filamentous cyanobacterium Leptolyngbya sp. CPCC 696 , 2011, Photosynthesis Research.

[66]  C. Warren,et al.  Stand aside Stomata, Another Actor Deserves Centre Stage: the Forgotten Role of the Internal Conductance to Co 2 Transfer , 2022 .

[67]  J. Raven,et al.  External and Internal CO2 Transport in Lemanea: Interactions with the Kinetics of Ribulose Bisphosphate Carboxylase , 1985 .

[68]  R. Sage,et al.  Functional constraints of CAM leaf anatomy: tight cell packing is associated with increased CAM function across a gradient of CAM expression. , 2007, Journal of experimental botany.

[69]  H. Griffiths,et al.  Can the progressive increase of C₄ bundle sheath leakiness at low PFD be explained by incomplete suppression of photorespiration? , 2010, Plant, cell & environment.

[70]  J. Moroney,et al.  The carbon concentrating mechanism in Chlamydomonas reinhardtii: finding the missing pieces , 2014, Photosynthesis Research.

[71]  J. Raven,et al.  Algal evolution in relation to atmospheric CO2: carboxylases, carbon-concentrating mechanisms and carbon oxidation cycles , 2012, Philosophical Transactions of the Royal Society B: Biological Sciences.

[72]  B. Colman,et al.  Uptake of Inorganic Carbon by Isolated Chloroplasts of the Unicellular Green Alga Chlorella ellipsoidea. , 1990, Plant physiology.

[73]  Park S. Nobel,et al.  Physicochemical and Environmental Plant Physiology , 1991 .

[74]  J. Raven,et al.  Interactions between carbon dioxide and oxygen in the photosynthesis of three species of marine red macroalgae , 2001 .

[75]  S. Maberly The fitness of the environments of air and water for photosynthesis, growth, reproduction and dispersal of photoautotrophs: An evolutionary and biogeochemical perspective , 2014 .

[76]  I. Wright,et al.  Leaf mesophyll diffusion conductance in 35 Australian sclerophylls covering a broad range of foliage structural and physiological variation. , 2009, Journal of experimental botany.

[77]  Alison M. Smith,et al.  Photorespiratory metabolism and immunogold localization of photorespiratory enzymes in leaves of C3 and C3-C4 intermediate species of Moricandia , 1988, Planta.

[78]  Jodi N. Young,et al.  The Minimal CO2-Concentrating Mechanism of Prochlorococcus spp. MED4 Is Effective and Efficient1[W][OPEN] , 2014, Plant Physiology.

[79]  C. Hylton,et al.  The relationship between the post-illumination CO2 burst and glycine metabolism in leaves of C3 and C3-C4 intermediate species of Moricandia , 1991, Planta.

[80]  V. Davisson,et al.  Interrogating the mechanism of a tight binding inhibitor of AIR carboxylase. , 2009, Bioorganic & medicinal chemistry.

[81]  I. Berman‐Frank,et al.  Combined Effects of CO2 and Light on the N2-Fixing Cyanobacterium Trichodesmium IMS101: Physiological Responses1[OA] , 2010, Plant Physiology.

[82]  R. Sage,et al.  Functional leaf anatomy of plants with crassulacean acid metabolism. , 2005, Functional plant biology : FPB.

[83]  M. Hagemann,et al.  Pathway and importance of photorespiratory 2-phosphoglycolate metabolism in cyanobacteria. , 2010, Advances in experimental medicine and biology.

[84]  C. Goh,et al.  Photosynthetic Carbon Assimilation in a Shootless Orchid, Chiloschista usneoides (DON) LDL: A Variant on Crassulacean Acid Metabolism. , 1985, Plant physiology.

[85]  S. Kranz,et al.  Cellular inorganic carbon fluxes in Trichodesmium: a combined approach using measurements and modelling , 2014, Journal of experimental botany.

[86]  I. E. Huertas,et al.  Light-dependent bicarbonate uptake and CO2 efflux in the marine microalga Nannochloropsis gaditana , 2000, Planta.

[87]  J. Raven,et al.  Algae lacking carbon-concentrating mechanisms , 2005 .

[88]  I. E. Huertas,et al.  Mitochondrial-Driven Bicarbonate Transport Supports Photosynthesis in a Marine Microalga1 , 2002, Plant Physiology.

[89]  P. Nobel,et al.  Cells and Diffusion , 2020, Physicochemical and Environmental Plant Physiology.

[90]  A. M. Johnston,et al.  The effects of reduced and elevated CO2 and O2 on the seaweed Lomentaria articulata , 1999 .

[91]  I. Ting,et al.  Relationships between Stomatal Behavior and Internal Carbon Dioxide Concentration in Crassulacean Acid Metabolism Plants. , 1979, Plant physiology.

[92]  J. Raven,et al.  CO2 concentrating mechanisms in algae: mechanisms, environmental modulation, and evolution. , 2005, Annual review of plant biology.

[93]  U. Riebesell,et al.  CO2 and HCO3 ߚ uptake in marine diatoms acclimated to different CO2 concentrations , 2001 .

[94]  J. Moroney,et al.  Proposed Carbon Dioxide Concentrating Mechanism in Chlamydomonas reinhardtii , 2007, Eukaryotic Cell.

[95]  M. Badger,et al.  CO2 concentrating mechanisms in cyanobacteria: molecular components, their diversity and evolution. , 2003, Journal of experimental botany.

[96]  T. Okita Crassulacean acid metabolism: Biochemistry, ecophysiology and evolution , 1996 .

[97]  D. Jones,et al.  Glycine decarboxylase is confined to the bundle-sheath cells of leaves of C3−C4 intermediate species , 1988, Planta.

[98]  J. A. Smith,et al.  Crassulacean acid metabolism: a continuous or discrete trait? , 2015, The New phytologist.

[99]  R. DeFries,et al.  Global distribution of C3 and C4 vegetation: Carbon cycle implications , 2003 .

[100]  B. Hopkinson A chloroplast pump model for the CO2 concentrating mechanism in the diatom Phaeodactylum tricornutum , 2014, Photosynthesis Research.

[101]  I. Terashima,et al.  Overexpression of the barley aquaporin HvPIP2;1 increases internal CO(2) conductance and CO(2) assimilation in the leaves of transgenic rice plants. , 2004, Plant & cell physiology.

[102]  D. Sültemeyer,et al.  Uptake of CO2 and bicarbonate by intact cells and chloroplasts of Tetraedron minimum and Chlamydomonas noctigama , 2002, Planta.

[103]  Murray R. Badger,et al.  A Model for HCO(3) Accumulation and Photosynthesis in the Cyanobacterium Synechococcus sp: Theoretical Predictions and Experimental Observations. , 1985, Plant physiology.

[104]  J. Raven Sensing inorganic carbon: CO2 and HCO3-. , 2006, The Biochemical journal.

[105]  Aaron Kaplan,et al.  The photorespiratory glycolate metabolism is essential for cyanobacteria and might have been conveyed endosymbiontically to plants , 2008, Proceedings of the National Academy of Sciences.

[106]  John Beardall,et al.  Energy costs of carbon dioxide concentrating mechanisms in aquatic organisms , 2014, Photosynthesis Research.

[107]  J. Raven,et al.  CO2 concentrating mechanisms and environmental change , 2014 .

[108]  S. Maeda,et al.  Modes of active inorganic carbon uptake in the cyanobacterium, Synechococcus sp. PCC7942. , 2002, Functional plant biology : FPB.

[109]  Jamey D. Young,et al.  Mapping photoautotrophic metabolism with isotopically nonstationary (13)C flux analysis. , 2011, Metabolic engineering.

[110]  H. Fukuzawa,et al.  Characterization of cooperative bicarbonate uptake into chloroplast stroma in the green alga Chlamydomonas reinhardtii , 2015, Proceedings of the National Academy of Sciences.

[111]  I. E. Huertas,et al.  Comparative study of dissolved inorganic carbon utilization and photosynthetic responses in Nannochloris (Chlorophyceae) and Nannochloropsis (Eustigmatophyceae) species , 1998 .

[112]  C. Lovisolo,et al.  The tobacco aquaporin NtAQP1 is a membrane CO2 pore with physiological functions , 2003, Nature.

[113]  Lei Kai,et al.  A refined model of water and CO2 membrane diffusion: Effects and contribution of sterols and proteins , 2014, Scientific Reports.

[114]  J. Raven,et al.  Quantitative Determination of the Unstirred Layer Permeability and Kinetic Parameters of RUBISCO in Lemanea mamillosa , 1989 .

[115]  R. Lew,et al.  Evidence for active CO2 uptake by a CO2-ATPase in the acidophilic green alga Eremosphaera viridis , 2001 .

[116]  S. Turner,et al.  Coordination of the cell-specific distribution of the four subunits of glycine decarboxylase and of serine hydroxymethyltransferase in leaves of C3-C4 intermediate species from different genera , 1993, Planta.

[117]  U. Riebesell,et al.  CO 2 and HCO 3 2 uptake in marine diatoms acclimated to different CO 2 concentrations , 2001 .

[118]  A. Kaplan,et al.  Sustained net CO2 evolution during photosynthesis by marine microorganism , 1997, Current Biology.

[119]  Michael P Brenner,et al.  Systems analysis of the CO2 concentrating mechanism in cyanobacteria , 2014, eLife.

[120]  B. Colman,et al.  The acquisition and accumulation of inorganic carbon by the unicellular green alga Chlorella ellipsoidea , 1991 .

[121]  J. R. Evans,et al.  Using tunable diode laser spectroscopy to measure carbon isotope discrimination and mesophyll conductance to CO₂ diffusion dynamically at different CO₂ concentrations. , 2011, Plant, cell & environment.

[122]  J. Raven Inorganic Carbon Acquisition by Marine Autotrophs , 1997 .

[123]  D. T. Canvin,et al.  HCO3- EFFLUX AND THE REGULATION OF THE INTRACELLULAR CI POOL SIZE IN SYNECHOCOCCUS UTEX 625 , 1997 .

[124]  J. R. Coleman,et al.  Influx and efflux of inorganic carbon during steady-state photosynthesis of air-grown Anabaena variabilis , 1997 .

[125]  G. Tcherkez Is the recovery of (photo) respiratory CO2 and intermediates minimal? , 2013, The New phytologist.

[126]  A. M. Johnston,et al.  SOURCES OF INORGANIC CARBON FOR PHOTOSYNTHESIS BY THREE SPECIES OF MARINE DIATOM 1 , 1997 .

[127]  J. Raven,et al.  C, N and P nutrition of Lemanea mamillosa Kütz. (Batrachospermales, Rhodophyta) in the Dighty Burn, Angus, U.K. , 1990 .

[128]  U. Riebesell,et al.  Inorganic carbon acquisition in red tide dinoflagellates. , 2006, Plant, cell & environment.

[129]  H. Sekimoto,et al.  Analysis of binding of biotinylated protoplast-release-inducing protein that induces release of gametic protoplasts in the Closterium peracerosum-strigosum-littorale complex , 1993, Planta.

[130]  Effect of light and CO2 on inorganic carbon uptake in the invasive aquatic CAM-plant Crassula helmsii. , 2010 .

[131]  Fabian Itel,et al.  How does carbon dioxide permeate cell membranes? A discussion of concepts, results and methods , 2013, Front. Physiol..

[132]  G. Espie,et al.  Inorganic Carbon Uptake during Photosynthesis : II. Uptake by Isolated Asparagus Mesophyll Cells during Isotopic Disequilibrium. , 1986, Plant physiology.

[133]  M. Spalding,et al.  Acclimation to Very Low CO2: Contribution of Limiting CO2 Inducible Proteins, LCIB and LCIA, to Inorganic Carbon Uptake in Chlamydomonas reinhardtii1[OPEN] , 2014, Plant Physiology.

[134]  H. Griffiths,et al.  Acclimation to low light by C4 maize: implications for bundle sheath leakiness. , 2014, Plant, cell & environment.