O2 partitioning of sulfur oxidizing bacteria drives acidity and thiosulfate distributions in mining waters

[1]  Filipa L. Sousa,et al.  DiSCo: a sequence-based type-specific predictor of Dsr-dependent dissimilatory sulphur metabolism in microbial data , 2021, Microbial genomics.

[2]  Martin Stringer,et al.  Tailings facility disclosures reveal stability risks , 2021, Scientific reports.

[3]  M. C. Vila,et al.  Characterisation of bacterial communities from an active mining site and assessment of its potential metal solubilising activity , 2020 .

[4]  R. Chakraborty,et al.  Aerobic microbial communities in the sediments of a marine oxygen minimum zone , 2020, FEMS microbiology letters.

[5]  Chad V. Jarolimek,et al.  Microbial Succession Signals the Initiation of Acidification in Mining Wastewaters , 2020, Mine Water and the Environment.

[6]  Chad V. Jarolimek,et al.  A Mass-Balance Tool for Monitoring Potential Dissolved Sulfur Oxidation Risks in Mining Impacted Waters , 2020, Mine Water and the Environment.

[7]  Anders F. Andersson,et al.  Active sulfur cycling in the terrestrial deep subsurface , 2020, The ISME Journal.

[8]  C. Chan,et al.  Elemental Sulfur Formation by Sulfuricurvum kujiense Is Mediated by Extracellular Organic Compounds , 2019, Front. Microbiol..

[9]  Olga Chernomor,et al.  IQ-TREE 2: New Models and Efficient Methods for Phylogenetic Inference in the Genomic Era , 2019, bioRxiv.

[10]  J. Banfield,et al.  Accurate and complete genomes from metagenomes , 2019, bioRxiv.

[11]  J. Fuhrman,et al.  Dynamic marine viral infections and major contribution to photosynthetic processes shown by spatiotemporal picoplankton metatranscriptomes , 2019, Nature Communications.

[12]  Chad V. Jarolimek,et al.  The Potential Role of Halothiobacillus spp. in Sulfur Oxidation and Acid Generation in Circum-Neutral Mine Tailings Reservoirs , 2019, Front. Microbiol..

[13]  Taichi E. Takasuka,et al.  Genomes of Neutrophilic Sulfur-Oxidizing Chemolithoautotrophs Representing 9 Proteobacterial Species From 8 Genera , 2019, Front. Microbiol..

[14]  G. Muyzer,et al.  Diversity and Distribution of Sulfur Oxidation-Related Genes in Thioalkalivibrio, a Genus of Chemolithoautotrophic and Haloalkaliphilic Sulfur-Oxidizing Bacteria , 2019, Front. Microbiol..

[15]  Patricia P. Chan,et al.  tRNAscan-SE: Searching for tRNA Genes in Genomic Sequences. , 2019, Methods in molecular biology.

[16]  Xinyun Cao,et al.  Lipoate-binding proteins and specific lipoate-protein ligases in microbial sulfur oxidation reveal an atpyical role for an old cofactor , 2018, eLife.

[17]  C. Dahl,et al.  A novel bacterial sulfur oxidation pathway provides a new link between the cycles of organic and inorganic sulfur compounds , 2018, The ISME Journal.

[18]  G. Slater,et al.  The interplay of methane and ammonia as key oxygen consuming constituents in early stage development of Base Mine Lake, the first demonstration oil sands pit lake , 2018, Applied Geochemistry.

[19]  A. Misra,et al.  Homologs from sulfur oxidation (Sox) and methanol dehydrogenation (Xox) enzyme systems collaborate to give rise to a novel pathway of chemolithotrophic tetrathionate oxidation , 2018, Molecular microbiology.

[20]  Brian C. Thomas,et al.  Expanded diversity of microbial groups that shape the dissimilatory sulfur cycle , 2018, The ISME Journal.

[21]  E. Rimm,et al.  Metatranscriptome of human fecal microbial communities in a cohort of adult men , 2018, Nature Microbiology.

[22]  J. Banfield,et al.  dRep: a tool for fast and accurate genomic comparisons that enables improved genome recovery from metagenomes through de-replication , 2017, The ISME Journal.

[23]  A. Findlay,et al.  Disguised as a Sulfate Reducer: Growth of the Deltaproteobacterium Desulfurivibrio alkaliphilus by Sulfide Oxidation with Nitrate , 2017, mBio.

[24]  O. Ulloa,et al.  Cryptic oxygen cycling in anoxic marine zones , 2017, Proceedings of the National Academy of Sciences.

[25]  B. Berks,et al.  Intermediates in the Sox sulfur oxidation pathway are bound to a sulfane conjugate of the carrier protein SoxYZ , 2017, PloS one.

[26]  Yanshu Li,et al.  Compositions and Abundances of Sulfate-Reducing and Sulfur-Oxidizing Microorganisms in Water-Flooded Petroleum Reservoirs with Different Temperatures in China , 2017, Front. Microbiol..

[27]  N. Ravin,et al.  Respiratory Ammonification of Nitrate Coupled to Anaerobic Oxidation of Elemental Sulfur in Deep-Sea Autotrophic Thermophilic Bacteria , 2017, Front. Microbiol..

[28]  J. Santander,et al.  Complete genome sequence of the salmonella enterica serovar enteritidis bacteriophages fSE1C and fSE4C isolated from food matrices , 2017, Standards in genomic sciences.

[29]  Minoru Kanehisa,et al.  KEGG: new perspectives on genomes, pathways, diseases and drugs , 2016, Nucleic Acids Res..

[30]  The UniProt Consortium UniProt: the universal protein knowledgebase , 2016, Nucleic Acids Res..

[31]  Brian C. Thomas,et al.  Thousands of microbial genomes shed light on interconnected biogeochemical processes in an aquifer system , 2016, Nature Communications.

[32]  Paul J. McMurdie,et al.  DADA2: High resolution sample inference from Illumina amplicon data , 2016, Nature Methods.

[33]  W. Shu,et al.  Microbial communities, processes and functions in acid mine drainage ecosystems. , 2016, Current opinion in biotechnology.

[34]  Dongwan D. Kang,et al.  MetaBAT, an efficient tool for accurately reconstructing single genomes from complex microbial communities , 2015, PeerJ.

[35]  Brian C. Thomas,et al.  Unusual biology across a group comprising more than 15% of domain Bacteria , 2015, Nature.

[36]  D. Blowes,et al.  Geochemical and mineralogical aspects of sulfide mine tailings , 2015 .

[37]  A. Sakoda,et al.  Dynamic transition of chemolithotrophic sulfur-oxidizing bacteria in response to amendment with nitrate in deposited marine sediments , 2015, Front. Microbiol..

[38]  Yan-xin Wang,et al.  Microbial Community in High Arsenic Shallow Groundwater Aquifers in Hetao Basin of Inner Mongolia, China , 2015, PloS one.

[39]  L. Polerecky,et al.  Assessment of the stoichiometry and efficiency of CO2 fixation coupled to reduced sulfur oxidation , 2015, Front. Microbiol..

[40]  W. Shu,et al.  Comparative metagenomic and metatranscriptomic analyses of microbial communities in acid mine drainage , 2014, The ISME Journal.

[41]  P. Chain,et al.  Ecological roles of dominant and rare prokaryotes in acid mine drainage revealed by metagenomics and metatranscriptomics , 2014, The ISME Journal.

[42]  Min Yang,et al.  Characteristics of biofilms and iron corrosion scales with ground and surface waters in drinking water distribution systems , 2015 .

[43]  Qing-ye Sun,et al.  Archaeal and bacterial communities in acid mine drainage from metal-rich abandoned tailing ponds, Tongling, China , 2014 .

[44]  Yuan-ming Luo,et al.  Thiosulfate Transfer Mediated by DsrE/TusA Homologs from Acidothermophilic Sulfur-oxidizing Archaeon Metallosphaera cuprina , 2014, The Journal of Biological Chemistry.

[45]  Xiang-mei Liu,et al.  Identification and characterization of an ETHE1-like sulfur dioxygenase in extremely acidophilic Acidithiobacillus spp. , 2014, Applied Microbiology and Biotechnology.

[46]  C. Dahl,et al.  Sulfite oxidation in the purple sulfur bacterium Allochromatium vinosum: identification of SoeABC as a major player and relevance of SoxYZ in the process. , 2013, Microbiology.

[47]  Dorothee Wilhelms-Dick,et al.  Oxygen-dependent niche formation of a pyrite-dependent acidophilic consortium built by archaea and bacteria , 2013, The ISME Journal.

[48]  T. Ferdelman,et al.  Intermediate sulfur oxidation state compounds in the euxinic surface sediments of the Dvurechenskii mud volcano (Black Sea) , 2013 .

[49]  M. Klotz,et al.  Diversity and evolution of bioenergetic systems involved in microbial nitrogen compound transformations. , 2013, Biochimica et biophysica acta.

[50]  K. Hawboldt,et al.  The Importance of Thiosalts Speciation: Review of Analytical Methods, Kinetics, and Treatment , 2013 .

[51]  Pelin Yilmaz,et al.  The SILVA ribosomal RNA gene database project: improved data processing and web-based tools , 2012, Nucleic Acids Res..

[52]  J. Bergmann,et al.  Thiosulfate dehydrogenase: a widespread unusual acidophilic c-type cytochrome. , 2012, Environmental microbiology.

[53]  Siu-Ming Yiu,et al.  IDBA-UD: a de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth , 2012, Bioinform..

[54]  Shane S. Sturrock,et al.  Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data , 2012, Bioinform..

[55]  J. Qu,et al.  Effects of disinfectant and biofilm on the corrosion of cast iron pipes in a reclaimed water distribution system. , 2012, Water research.

[56]  William A. Walters,et al.  Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms , 2012, The ISME Journal.

[57]  Steven L Salzberg,et al.  Fast gapped-read alignment with Bowtie 2 , 2012, Nature Methods.

[58]  Steven E. Lohrenz,et al.  Acidification of subsurface coastal waters enhanced by eutrophication , 2011 .

[59]  S. Kimura,et al.  Biodiversity and geochemistry of an extremely acidic, low-temperature subterranean environment sustained by chemolithotrophy. , 2011, Environmental microbiology.

[60]  Marcel Martin Cutadapt removes adapter sequences from high-throughput sequencing reads , 2011 .

[61]  B. Jørgensen,et al.  Sulfate reduction below the sulfate–methane transition in Black Sea sediments , 2011 .

[62]  Andrea K. Bartram,et al.  Generation of Multimillion-Sequence 16S rRNA Gene Libraries from Complex Microbial Communities by Assembling Paired-End Illumina Reads , 2011, Applied and Environmental Microbiology.

[63]  X. Yuan,et al.  Isolation and characterization of a novel sulfuroxidizing chemolithoautotroph Halothiobacillus from Pb polluted paddy soil , 2011 .

[64]  A. Schippers,et al.  The biogeochemistry and microbiology of sulfidic mine waste and bioleaching dumps and heaps, and novel Fe(II)-oxidizing bacteria , 2010 .

[65]  K. Hallberg New perspectives in acid mine drainage microbiology , 2010 .

[66]  Robert C. Edgar,et al.  Search and clustering orders of magnitude faster than BLAST , 2010, Bioinform..

[67]  Tong Zhang,et al.  Sulfur-driven autotrophic denitrification: diversity, biochemistry, and engineering applications , 2010, Applied Microbiology and Biotechnology.

[68]  William A. Walters,et al.  Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample , 2010, Proceedings of the National Academy of Sciences.

[69]  E. Delong,et al.  Development and quantitative analyses of a universal rRNA-subtraction protocol for microbial metatranscriptomics , 2010, The ISME Journal.

[70]  Miriam L. Land,et al.  Trace: Tennessee Research and Creative Exchange Prodigal: Prokaryotic Gene Recognition and Translation Initiation Site Identification Recommended Citation Prodigal: Prokaryotic Gene Recognition and Translation Initiation Site Identification , 2022 .

[71]  Toni Gabaldón,et al.  trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses , 2009, Bioinform..

[72]  Gonçalo R. Abecasis,et al.  The Sequence Alignment/Map format and SAMtools , 2009, Bioinform..

[73]  Y. Kruglov,et al.  A cellulose-decomposing bacterial association , 2009, Microbiology.

[74]  Michael Wagner,et al.  Reverse dissimilatory sulfite reductase as phylogenetic marker for a subgroup of sulfur-oxidizing prokaryotes , 2009, Environmental microbiology.

[75]  N. Frigaard,et al.  Sulfur metabolism in phototrophic sulfur bacteria. , 2009, Advances in microbial physiology.

[76]  L. Warren,et al.  Microbial thiosulphate reaction arrays: the interactive roles of Fe(III), O2 and microbial strain on disproportionation and oxidation pathways , 2008, Geobiology.

[77]  Kai Finster,et al.  Microbiological disproportionation of inorganic sulfur compounds , 2008 .

[78]  O. Lev,et al.  Speciation of Polysulfides and Zerovalent Sulfur in Sulfide-rich Water Wells in Southern and Central Israel , 2008 .

[79]  C. Dahl,et al.  Microbial sulfur metabolism , 2008 .

[80]  J. Imhoff,et al.  Molecular analysis of the distribution and phylogeny of the soxB gene among sulfur-oxidizing bacteria - evolution of the Sox sulfur oxidation enzyme system. , 2007, Environmental microbiology.

[81]  J. Kuever,et al.  Molecular analysis of the distribution and phylogeny of dissimilatory adenosine-5'-phosphosulfate reductase-encoding genes (aprBA) among sulfur-oxidizing prokaryotes. , 2007, Microbiology.

[82]  Peter B. McGarvey,et al.  UniRef: comprehensive and non-redundant UniProt reference clusters , 2007, Bioinform..

[83]  Satoshi Okabe,et al.  Succession of Sulfur-Oxidizing Bacteria in the Microbial Community on Corroding Concrete in Sewer Systems , 2006, Applied and Environmental Microbiology.

[84]  C. Friedrich,et al.  Prokaryotic sulfur oxidation. , 2005, Current opinion in microbiology.

[85]  Y. Nodasaka,et al.  Thiovirga sulfuroxydans gen. nov., sp. nov., a chemolithoautotrophic sulfur-oxidizing bacterium isolated from a microaerobic waste-water biofilm. , 2005, International journal of systematic and evolutionary microbiology.

[86]  L. Warren,et al.  Microbially driven acidity generation in a tailings lake , 2005 .

[87]  Kazuya Watanabe,et al.  Sulfuricurvum kujiense gen. nov., sp. nov., a facultatively anaerobic, chemolithoautotrophic, sulfur-oxidizing bacterium isolated from an underground crude-oil storage cavity. , 2004, International journal of systematic and evolutionary microbiology.

[88]  T. Urich,et al.  Coupling of the pathway of sulphur oxidation to dioxygen reduction: characterization of a novel membrane‐bound thiosulphate:quinone oxidoreductase , 2004, Molecular microbiology.

[89]  J. Banfield,et al.  Community structure and metabolism through reconstruction of microbial genomes from the environment , 2004, Nature.

[90]  Robert C. Edgar,et al.  MUSCLE: multiple sequence alignment with high accuracy and high throughput. , 2004, Nucleic acids research.

[91]  Cathy H. Wu,et al.  UniProt: the Universal Protein knowledgebase , 2004, Nucleic Acids Res..

[92]  D Barrie Johnson,et al.  The microbiology of acidic mine waters. , 2003, Research in microbiology.

[93]  Jillian F Banfield,et al.  Microbial communities in acid mine drainage. , 2003, FEMS microbiology ecology.

[94]  C. Friedrich,et al.  Oxidation of Reduced Inorganic Sulfur Compounds by Bacteria: Emergence of a Common Mechanism? , 2001, Applied and Environmental Microbiology.

[95]  L. Babich,et al.  [Auxotrophy and utilization of oxidized and reduced mineral sulfur forms by Brevundimonas diminuta strains]. , 2001, Mikrobiolohichnyi zhurnal.

[96]  G. Luther,et al.  Sulfur speciation monitored in situ with solid state gold amalgam voltammetric microelectrodes: polysulfides as a special case in sediments, microbial mats and hydrothermal vent waters. , 2001, Journal of environmental monitoring : JEM.

[97]  J. Kuever,et al.  Halothiobacillus kellyi sp. nov., a mesophilic, obligately chemolithoautotrophic, sulfur-oxidizing bacterium isolated from a shallow-water hydrothermal vent in the Aegean Sea, and emended description of the genus Halothiobacillus. , 2000, International journal of systematic and evolutionary microbiology.

[98]  C. Dahl,et al.  Sirohaem sulfite reductase and other proteins encoded by genes at the dsr locus of Chromatium vinosum are involved in the oxidation of intracellular sulfur. , 1998, Microbiology.

[99]  Banfield,et al.  Distribution of thiobacillus ferrooxidans and leptospirillum ferrooxidans: implications for generation of acid mine drainage , 1998, Science.

[100]  P. Bos,et al.  Isolation of the tetrathionate hydrolase from Thiobacillus acidophilus. , 1997, European journal of biochemistry.

[101]  U. Fischer,et al.  Detection of traces of oxidized and reduced sulfur compounds in small samples by combination of different high-performance liquid chromatography methods☆ , 1997 .

[102]  D. White,et al.  The genus Sphingomonas: physiology and ecology. , 1996, Current opinion in biotechnology.

[103]  J. Pronk,et al.  Oxidation of reduced sulphur compounds by intact cells of Thiobacillus acidophilus , 1992, Archives of Microbiology.

[104]  K. Sonomoto,et al.  Identification of the DNA region responsible for sulfur-oxidizing ability of Thiosphaera pantotropha , 1991, Journal of bacteriology.