Current Variability in Si Nanowire MOSFETs Due to Random Dopants in the Source/Drain Regions: A Fully 3-D NEGF Simulation Study
暂无分享,去创建一个
A. Asenov | N. Seoane | A. Martinez | A. Asenov | J. Barker | A. Martinez | A.R. Brown | N. Seoane | A.R. Brown | J.R. Barker | A. Brown | A. Brown | A. Martinez | A. R. Brown | Antonio Martinez
[1] Simulation of impurities with an attractive potential in fully 3-D real-space Non-Equilibrium Green’s Function quantum transport simulations , 2008, 2008 International Conference on Simulation of Semiconductor Processes and Devices.
[2] Ming Zhu,et al. 5 nm gate length Nanowire-FETs and planar UTB-FETs with pure germanium source/drain stressors and laser-free Melt-Enhanced Dopant (MeltED) diffusion and activation technique , 2008, 2008 Symposium on VLSI Technology.
[3] Donggun Park,et al. Gate-all-around single silicon nanowire MOSFET with 7 nm width for SONOS NAND flash memory , 2008, 2008 Symposium on VLSI Technology.
[4] Boundary conditions for Density Gradient corrections in 3D Monte Carlo simulations , 2008 .
[6] Transport in silicon nanowires: role of radial dopant profile , 2008, 0801.1186.
[7] M. Anantram,et al. Multidimensional Modeling of Nanotransistors , 2007, IEEE Transactions on Electron Devices.
[8] A. Asenov,et al. Nanowire MOSFET variability : a 3 D density gradient versus NEGF approach , 2007 .
[9] Erratum: “Two-dimensional quantum mechanical modeling of nanotransistors” [J. Appl. Phys. 91, 2343 (2002)] , 2006 .
[10] A. Asenov,et al. Simulation Study of Individual and Combined Sources of Intrinsic Parameter Fluctuations in Conventional Nano-MOSFETs , 2006, IEEE Transactions on Electron Devices.
[11] X. Blase,et al. Surface segregation and backscattering in doped silicon nanowires. , 2006, Physical review letters.
[12] D. Munteanu,et al. Influence of band-structure on electron ballistic transport in silicon nanowire MOSFET's: an atomistic study , 2005, Proceedings of 35th European Solid-State Device Research Conference, 2005. ESSDERC 2005..
[13] Charles M. Lieber,et al. One-dimensional hole gas in germanium/silicon nanowire heterostructures. , 2005, Proceedings of the National Academy of Sciences of the United States of America.
[14] A. Manolescu,et al. Coherent electronic transport in a multimode quantum channel with Gaussian-type scatterers , 2004, cond-mat/0408435.
[15] S. Datta. Quantum Transport: Atom to Transistor , 2004 .
[16] S. Datta,et al. Simulating quantum transport in nanoscale transistors: Real versus mode-space approaches , 2002 .
[17] M. Anantram,et al. Two-dimensional quantum mechanical modeling of nanotransistors , 2001, cond-mat/0111290.
[18] Andrew R. Brown,et al. Increase in the random dopant induced threshold fluctuations and lowering in sub-100 nm MOSFETs due to quantum effects: a 3-D density-gradient simulation study , 2001 .
[19] D. Frank,et al. Monte Carlo modeling of threshold variation due to dopant fluctuations , 1999, 1999 Symposium on VLSI Technology. Digest of Technical Papers (IEEE Cat. No.99CH36325).
[20] R. Landauer,et al. Conductance viewed as transmission , 1999 .
[21] Robert Hull,et al. Properties of Crystalline Silicon , 1999 .
[22] Gerhard Klimeck,et al. Single and multiband modeling of quantum electron transport through layered semiconductor devices , 1997 .
[23] Meir,et al. Landauer formula for the current through an interacting electron region. , 1992, Physical review letters.
[24] M. Büttiker. Symmetry of electrical conduction , 1988 .
[25] J. C. Inkson. Many-body theory of solids , 1984 .
[26] P. Anderson,et al. Definition and measurement of the electrical and thermal resistances , 1981 .
[27] R. Landauer. Electrical resistance of disordered one-dimensional lattices , 1970 .
[28] A. B. Migdal,et al. INTERACTION BETWEEN ELECTRONS AND THE LATTICE VIBRATIONS IN A NORMAL METAL , 1958 .