Five lowest S1 states of the Be atom calculated with a finite-nuclear-mass approach and with relativistic and QED corrections

Monika Stanke, Jacek Komasa, Sergiy Bubin, and Ludwik Adamowicz Institute of Physics, Nicholas Copernicus University, ul. Grudziadzka 5, PL 87-100 Toruń, Poland Quantum Chemistry Group, Faculty of Chemistry, A. Mickiewicz University, Grunwaldzka 6, 60-780 Poznań, Poland Quantum Chemistry Research Institute, Kyodai Katsura Venture Plaza 106, Goryo Oohara 1-36, Nishikyo-ku, Kyoto 615-8245, Japan Department of Chemistry, University of Arizona, Tucson, Arizona 85721, USA Department of Physics, University of Arizona, Tucson, Arizona 85721, USA Received 9 June 2009; published 25 August 2009

[1]  L. Adamowicz,et al.  Lowest excitation energy of 9Be. , 2007, Physical review letters.

[2]  J. Komasa,et al.  Excitation energy ofBe9 , 2006 .

[3]  Zong-Chao Yan,et al.  Bethe logarithm and QED shift for lithium. , 2003, Physical review letters.

[4]  Gordon W. F. Drake,et al.  Relativistic and QED Energies in Lithium , 1998 .

[5]  J. Sapirstein Interplay of relativistic and nuclear effects in few-electron atoms and ions , 2006 .

[6]  L. Adamowicz,et al.  Relativistic corrections to the non-Born-Oppenheimer energies of the lowest singlet Rydberg states of 3He and 4He. , 2007, The Journal of chemical physics.

[7]  G. Lepage,et al.  Effective lagrangians for bound state problems in QED, QCD, and other field theories , 1986 .

[8]  W. C. Martin,et al.  A Compilation of Energy Levels and Wavelengths for the Spectrum of Neutral Beryllium (Be I) , 1997 .

[9]  J. Komasa,et al.  Bethe logarithm for the lithium atom from exponentially correlated gaussian functions , 2003 .

[10]  A. Yelkhovsky,et al.  Ionization Potential of the Helium AtomVladimir Korobov , 2001 .

[11]  A. Yelkhovsky,et al.  Ionization potential of the helium atom. , 2001, Physical review letters.

[12]  J. Komasa,et al.  Electron affinity of 7Li. , 2006, The Journal of chemical physics.

[13]  L. Adamowicz,et al.  Variational calculations of excited states with zero total angular momentum (vibrational spectrum) of H2 without use of the Born–Oppenheimer approximation , 2003 .

[14]  W. Cencek,et al.  On the acceleration of the convergence of singular operators in Gaussian basis sets. , 2005, The Journal of chemical physics.

[15]  L. Adamowicz,et al.  Three lowest S states of B9 e+ calculated with including nuclear motion and relativistic and QED corrections , 2008 .

[16]  L. Adamowicz,et al.  Non-Born–Oppenheimer calculations of atoms and molecules , 2003 .

[17]  L. Adamowicz,et al.  A correlated basis set for nonadiabatic energy calculations on diatomic molecules , 1999 .

[18]  L. Adamowicz,et al.  Calculations of low-lying P1 states of the beryllium atom , 2009 .

[19]  L. Adamowicz,et al.  Non‐Born–Oppenheimer Variational Calculations of Atoms and Molecules with Explicitly Correlated Gaussian Basis Functions , 2005 .

[20]  L. Adamowicz,et al.  Ionization potential of Be9 calculated including nuclear motion and relativistic corrections , 2007 .

[21]  H. Araki Quantum-Electrodynamical Corrections to Energy-Levels of Helium , 1957 .

[22]  L. Adamowicz,et al.  Improved Nonadiabatic Ground-State Energy Upper Bound for Dihydrogen , 1999 .

[23]  K. Pachucki Simple derivation of helium Lamb shift , 1998 .

[24]  L. Adamowicz,et al.  Electron affinity of (7)Li calculated with the inclusion of nuclear motion and relativistic corrections. , 2007, The Journal of chemical physics.

[25]  M. Molski,et al.  An accurate non-Born-Oppenheimer calculation of the first purely vibrational transition in LiH molecule. , 2005, The Journal of chemical physics.

[26]  V. Korobov,et al.  Bethe logarithm for the 1 1 S and 2 1 S states of helium , 1999 .

[27]  Monkhorst Chemical physics without the Born-Oppenheimer approximation: The molecular coupled-cluster method. , 1987, Physical review. A, General physics.

[28]  C. Schwartz LAMB SHIFT IN THE HELIUM ATOM , 1961 .

[29]  J. Komasa,et al.  Relativistic and QED corrections for the beryllium atom. , 2004, Physical review letters.

[30]  J. Sucher Energy Levels of the Two-Electron Atom to Order α 3 ry; Ionization Energy of Helium , 1958 .

[31]  L. Adamowicz,et al.  Energy and energy gradient matrix elements with N-particle explicitly correlated complex Gaussian basis functions with L=1. , 2008, The Journal of chemical physics.

[32]  L. Adamowicz,et al.  Accuracy limits on the description of the lowest S excitation in the Li atom using explicitly correlated Gaussian basis functions , 2008 .