Exhaustive comparison of colour texture features and classification methods to discriminate cells categories in histological images of fish ovary

The estimation of fecundity and reproductive cells (oocytes) development dynamic is essential for an accurate study of biology and population dynamics of fish species. This estimation can be developed using the stereometric method to analyse histological images of fish ovary. However, this method still requires specialised technicians and much time and effort to make routinary fecundity studies commonly used in fish stock assessment, because the available software does not allow an automatic analysis. The automatic fecundity estimation requires both the classification of cells depending on their stage of development and the measurement of their diameters, based on those cells that are cut through the nucleous within the histological slide. Human experts seem to use colour and texture properties of the image to classify cells, i.e., colour texture analysis from the computer vision point of view. In the current work, we provide an exhaustive statistical evaluation of a very wide variety of parallel and integrative texture analysis strategies, giving a total of 126 different feature vectors. Besides, a selection of 17 classifiers, representative of the currently available classification techniques, was used to classify the cells according to the presence/absence of nucleous and their stage of development. The Support Vector Machine (SVM) achieves the best results for nucleous (99.0% of accuracy using colour Local Binary Patterns (LPB) feature vector, integrative strategy) and for stages of development (99.6% using First Order Statistics and grey level LPB, parallel strategy) with the species Merluccius merluccius, and similar accuracies for Trisopterus luscus. These results provide a high reliability for an automatic fecundity estimation from histological images of fish ovary.

[1]  David J. Sheskin,et al.  Handbook of Parametric and Nonparametric Statistical Procedures , 1997 .

[2]  Christina Gloeckner,et al.  Modern Applied Statistics With S , 2003 .

[3]  Luis-Manuel Tomás-Balibrea,et al.  Automatic system for quality-based classification of marble textures , 2005, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[4]  Donald F. Specht,et al.  Probabilistic neural networks , 1990, Neural Networks.

[5]  Joseph Naor,et al.  Multiple Resolution Texture Analysis and Classification , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[6]  Robert P. W. Duin,et al.  STATISTICAL PATTERN RECOGNITION , 2005 .

[7]  Luciano da Fontoura Costa,et al.  Shape Analysis and Classification: Theory and Practice , 2000 .

[8]  Bidyut Baran Chaudhuri,et al.  An efficient approach to estimate fractal dimension of textural images , 1992, Pattern Recognit..

[9]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[10]  R. Tibshirani,et al.  Additive Logistic Regression : a Statistical View ofBoostingJerome , 1998 .

[11]  Mihai Ivanovici,et al.  Fractal Dimension of Color Fractal Images , 2011, IEEE Transactions on Image Processing.

[12]  Milan Sonka,et al.  Image pre-processing , 1993 .

[13]  N. H. C. Yung,et al.  Automated fabric defect detection - A review , 2011, Image Vis. Comput..

[14]  Teuvo Kohonen,et al.  Self-Organizing Maps , 2010 .

[15]  Simon Haykin,et al.  Neural Networks and Learning Machines , 2010 .

[16]  Yoav Freund,et al.  Experiments with a New Boosting Algorithm , 1996, ICML.

[17]  Thomas S. Huang,et al.  Image processing , 1971 .

[18]  Robert M. Hodgson,et al.  Texture Measures for Carpet Wear Assessment , 1988, IEEE Trans. Pattern Anal. Mach. Intell..

[19]  Shutao Li,et al.  Comparison and fusion of multiresolution features for texture classification , 2004, Proceedings of 2004 International Conference on Machine Learning and Cybernetics (IEEE Cat. No.04EX826).

[20]  Sim Heng Ong,et al.  Invariant texture classification for biomedical cell specimens via non-linear polar map filtering , 2010, Comput. Vis. Image Underst..

[21]  Da-Wen Sun,et al.  Recent applications of image texture for evaluation of food qualities—a review , 2006 .

[22]  Sergios Theodoridis,et al.  Pattern Recognition , 1998, IEEE Trans. Neural Networks.

[23]  Paul F. Whelan,et al.  Experiments in colour texture analysis , 2001, Pattern Recognit. Lett..

[24]  Gerd Kraus,et al.  Procedures to Estimate Fecundity of Wild Collected Marine Fish in Relation to Fish Reproductive Strategy , 2003 .

[25]  Andrew R. Webb,et al.  Statistical Pattern Recognition , 1999 .

[26]  Milan Sonka,et al.  Image Processing, Analysis and Machine Vision , 1993, Springer US.

[27]  Leo Breiman,et al.  Bagging Predictors , 1996, Machine Learning.

[28]  Trevor Hastie,et al.  Multi-class AdaBoost ∗ , 2009 .

[29]  Omar S. Al-Kadi,et al.  Texture measures combination for improved meningioma classification of histopathological images , 2010, Pattern Recognit..

[30]  Corinna Cortes,et al.  Support-Vector Networks , 1995, Machine Learning.

[31]  Shu Liao,et al.  Dominant Local Binary Patterns for Texture Classification , 2009, IEEE Transactions on Image Processing.

[32]  Anil K. Jain,et al.  Statistical Pattern Recognition: A Review , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[33]  R. Tibshirani,et al.  Discriminant Analysis by Gaussian Mixtures , 1996 .

[34]  Christoph Palm,et al.  Color texture classification by integrative Co-occurrence matrices , 2004, Pattern Recognit..

[35]  Ilias Maglogiannis,et al.  Overview of Advanced Computer Vision Systems for Skin Lesions Characterization , 2009, IEEE Transactions on Information Technology in Biomedicine.

[36]  Gerd Kraus,et al.  Procedures to estimate fecundity of marine fish species in relation to their reproductive strategy , 2003 .

[37]  Esteban Alfaro Cortés,et al.  Multiclass Corporate Failure Prediction by Adaboost.M1 , 2007 .

[38]  Xueming Qian,et al.  PLBP: An effective local binary patterns texture descriptor with pyramid representation , 2011, Pattern Recognit..

[39]  Yeuvo Jphonen,et al.  Self-Organizing Maps , 1995 .

[40]  G. MallatS. A Theory for Multiresolution Signal Decomposition , 1989 .

[41]  Mikhail Teverovskiy,et al.  Multifeature Prostate Cancer Diagnosis and Gleason Grading of Histological Images , 2007, IEEE Transactions on Medical Imaging.

[42]  R. Tibshirani,et al.  Generalized Additive Models , 1991 .

[43]  Arno Formella,et al.  Statistical and Wavelet Based Texture Features for Fish Oocytes Classification , 2011, IbPRIA.

[44]  Pilar Carrión,et al.  Classification of honeybee pollen using a multiscale texture filtering scheme , 2004, Machine Vision and Applications.

[45]  B Law,et al.  Fecundity. , 1971, British medical journal.

[46]  RandenTrygve,et al.  Filtering for Texture Classification , 1999 .

[47]  J. Freidman,et al.  Multivariate adaptive regression splines , 1991 .

[48]  Sherin M. Youssef,et al.  ICTEDCT-CBIR: Integrating curvelet transform with enhanced dominant colors extraction and texture analysis for efficient content-based image retrieval , 2012, Comput. Electr. Eng..

[49]  Md. Monirul Islam,et al.  A review on automatic image annotation techniques , 2012, Pattern Recognit..

[50]  Maria Petrou,et al.  Image processing - dealing with texture , 2020 .

[51]  Matti Pietikäinen,et al.  Multiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[52]  P. R. Witthames,et al.  A stereological method for estimating fish fecundity , 1990 .

[53]  Xiaoou Tang,et al.  Texture information in run-length matrices , 1998, IEEE Trans. Image Process..

[54]  Chih-Jen Lin,et al.  LIBSVM: A library for support vector machines , 2011, TIST.

[55]  E. Cernadas,et al.  Automatic detection and classification of grains of pollen based on shape and texture , 2006, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[56]  Trygve Randen,et al.  Filtering for Texture Classification: A Comparative Study , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[57]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[58]  Qinyu. Zhu Extreme Learning Machine , 2013 .

[59]  Tin Kam Ho,et al.  Complexity Measures of Supervised Classification Problems , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[60]  Yoav Freund,et al.  A decision-theoretic generalization of on-line learning and an application to boosting , 1995, EuroCOLT.

[61]  Michael Unser,et al.  Sum and Difference Histograms for Texture Classification , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[62]  Nirupam Sarkar,et al.  An Efficient Differential Box-Counting Approach to Compute Fractal Dimension of Image , 1994, IEEE Trans. Syst. Man Cybern. Syst..

[63]  Pablo García Rodríguez,et al.  Analyzing magnetic resonance images of Iberian pork loin to predict its sensorial characteristics , 2005, Comput. Vis. Image Underst..

[64]  Domènec Puig,et al.  Supervised texture classification by integration of multiple texture methods and evaluation windows , 2007, Image Vis. Comput..

[65]  Leo Breiman,et al.  Classification and Regression Trees , 1984 .

[66]  Shunlin Liang,et al.  Fractal analysis of remotely sensed images: A review of methods and applications , 2006 .

[67]  R. Tibshirani,et al.  Flexible Discriminant Analysis by Optimal Scoring , 1994 .

[68]  Hunter,et al.  Fecundity, Spawning, and Maturity of Female Dover Sole, Microstomus Pacificus, with an Evaluation of Assumptions and Precision , 2013 .

[69]  Chee Kheong Siew,et al.  Extreme learning machine: Theory and applications , 2006, Neurocomputing.

[70]  Stéphane Mallat,et al.  A Theory for Multiresolution Signal Decomposition: The Wavelet Representation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[71]  Sergios Theodoridis,et al.  Pattern Recognition, Fourth Edition , 2008 .