Moving Objects Analytics: Survey on Future Location & Trajectory Prediction Methods

The tremendous growth of positioning technologies and GPS enabled devices has produced huge volumes of tracking data during the recent years. This source of information constitutes a rich input for data analytics processes, either offline (e.g. cluster analysis, hot motion discovery) or online (e.g. short-term forecasting of forthcoming positions). This paper focuses on predictive analytics for moving objects (could be pedestrians, cars, vessels, planes, animals, etc.) and surveys the state-of-the-art in the context of future location and trajectory prediction. We provide an extensive review of over 50 works, also proposing a novel taxonomy of predictive algorithms over moving objects. We also list the properties of several real datasets used in the past for validation purposes of those works and, motivated by this, we discuss challenges that arise in the transition from conventional to Big Data applications. CCS Concepts: Information systems > Spatial-temporal systems; Information systems > Data analytics; Information systems > Data mining; Computing methodologies > Machine learning Additional Key Words and Phrases: mobility data, moving object trajectories, trajectory prediction, future location prediction.

[1]  Hanan Samet,et al.  Aircraft Trajectory Prediction Made Easy with Predictive Analytics , 2016, KDD.

[2]  K. Pearson VII. Note on regression and inheritance in the case of two parents , 1895, Proceedings of the Royal Society of London.

[3]  Christos Faloutsos,et al.  Prediction and indexing of moving objects with unknown motion patterns , 2004, SIGMOD '04.

[4]  Abraham Lempel,et al.  Compression of individual sequences via variable-rate coding , 1978, IEEE Trans. Inf. Theory.

[5]  A. Barabasi,et al.  Bose-Einstein condensation in complex networks. , 2000, Physical review letters.

[6]  Nikos Pelekis,et al.  Simulating Our LifeSteps by Example , 2016, TSAS.

[7]  Daniel Delahaye,et al.  Aircraft trajectory forecasting using local functional regression in Sobolev space , 2014 .

[8]  Nikos Pelekis,et al.  Increasing Maritime Situation Awareness via Trajectory Detection, Enrichment and Recognition of Events , 2018, W2GIS.

[9]  Oliver Günther,et al.  Multidimensional access methods , 1998, CSUR.

[10]  Yufei Tao,et al.  Time-parameterized queries in spatio-temporal databases , 2002, SIGMOD '02.

[11]  Luis Gravano,et al.  k-Shape: Efficient and Accurate Clustering of Time Series , 2016, SGMD.

[12]  B. Bollobás The evolution of random graphs , 1984 .

[13]  Qing Liu,et al.  A Hybrid Prediction Model for Moving Objects , 2008, 2008 IEEE 24th International Conference on Data Engineering.

[14]  Mikolaj Morzy,et al.  Mining Frequent Trajectories of Moving Objects for Location Prediction , 2007, MLDM.

[15]  Yunjun Gao,et al.  UlTraMan: A Unified Platform for Big Trajectory Data Management and Analytics , 2018, Proc. VLDB Endow..

[16]  P. Erdos,et al.  On the evolution of random graphs , 1984 .

[17]  Anna Monreale,et al.  WhereNext: a location predictor on trajectory pattern mining , 2009, KDD.

[18]  Abdeltawab M. Hendawi,et al.  Predictive tree: An efficient index for predictive queries on road networks , 2015, 2015 IEEE 31st International Conference on Data Engineering.

[19]  Max Mulder,et al.  A Machine Learning Approach to Trajectory Prediction , 2013 .

[20]  Boaz Porat,et al.  Digital Processing of Random Signals: Theory and Methods , 2008 .

[21]  Abdeltawab M. Hendawi,et al.  iRoad: A Framework For Scalable Predictive Query Processing On Road Networks , 2013, Proc. VLDB Endow..

[22]  Paolo Braca,et al.  Modeling vessel kinematics using a stochastic mean-reverting process for long-term prediction , 2016, IEEE Transactions on Aerospace and Electronic Systems.

[23]  Kai-quan Cai,et al.  Terminal-Area Aircraft Intent Inference Approach Based on Online Trajectory Clustering , 2015, TheScientificWorldJournal.

[24]  Bo Xu,et al.  Time-series prediction with applications to traffic and moving objects databases , 2003, MobiDe '03.

[25]  Hanan Samet,et al.  Time series clustering of weather observations in predicting climb phase of aircraft trajectories , 2016, IWCTS@SIGSPATIAL.

[26]  Gabriele Enea,et al.  A COMPARISON OF 4 D-TRAJECTORY OPERATIONS ENVISIONED FOR NEXTGEN AND SESAR , SOME PRELIMINARY FINDINGS , 2012 .

[27]  Hyochoong Bang,et al.  ADS-B based Trajectory Prediction and Conflict Detection for Air Traffic Management , 2012 .

[28]  Daniel A. Keim,et al.  Visual Analytics of Movement , 2013, Springer Berlin Heidelberg.

[29]  Hiroyuki Kitagawa,et al.  Extracting Mobility Statistics from Indexed Spatio-Temporal Datasets , 2004, STDBM.

[30]  Ramakrishnan Srikant,et al.  Fast Algorithms for Mining Association Rules in Large Databases , 1994, VLDB.

[31]  Alex Pentland,et al.  Reality mining: sensing complex social systems , 2006, Personal and Ubiquitous Computing.

[32]  Simon Haykin,et al.  Adaptive filter theory (2nd ed.) , 1991 .

[33]  Dimitrios Gunopulos,et al.  On indexing mobile objects , 1999, PODS '99.

[34]  Inseok Hwang,et al.  Stochastic optimal control for aircraft conflict resolution under wind uncertainty , 2015 .

[35]  Peng Cheng,et al.  Data mining for air traffic flow forecasting: a hybrid model of neural network and statistical analysis , 2003, Proceedings of the 2003 IEEE International Conference on Intelligent Transportation Systems.

[36]  Thad Starner,et al.  Using GPS to learn significant locations and predict movement across multiple users , 2003, Personal and Ubiquitous Computing.

[37]  Christian S. Jensen,et al.  Path prediction and predictive range querying in road network databases , 2010, The VLDB Journal.

[38]  Yang Wang,et al.  A Spatial-Temporal-Semantic Neural Network Algorithm for Location Prediction on Moving Objects , 2017, Algorithms.

[39]  Debasish Ghose,et al.  Reactive collision avoidance of multiple realistic UAVs , 2011 .

[40]  Sanjay Chawla,et al.  Mining Spatio-temporal Association Rules, Sources, Sinks, Stationary Regions and Thoroughfares in Object Mobility Databases , 2006, DASFAA.

[41]  Esther Calvo Fernández,et al.  DART : A Machine-Learning Approach to Trajectory Prediction and Demand-Capacity Balancing , 2017 .

[42]  Eamonn J. Keogh,et al.  Exact indexing of dynamic time warping , 2002, Knowledge and Information Systems.

[43]  João Bártolo Gomes,et al.  Where Will You Go? Mobile Data Mining for Next Place Prediction , 2013, DaWaK.

[44]  Xing Xie,et al.  Mining Individual Life Pattern Based on Location History , 2009, 2009 Tenth International Conference on Mobile Data Management: Systems, Services and Middleware.

[45]  Keumjin Lee,et al.  Trajectory Prediction for Vectored Area Navigation Arrivals , 2015, J. Aerosp. Inf. Syst..

[46]  Abdeltawab M. Hendawi,et al.  Panda: a predictive spatio-temporal query processor , 2012, SIGSPATIAL/GIS.

[47]  Nasrudin Abd Rahim,et al.  Unmanned Aircraft Collision Avoidance System Using Cooperative Agent-Based Negotiation Approach , 2009 .

[48]  Mikolaj Morzy,et al.  Prediction of Moving Object Location Based on Frequent Trajectories , 2006, ISCIS.

[49]  George Kollios,et al.  Mining, indexing, and querying historical spatiotemporal data , 2004, KDD.

[50]  Abdeltawab M. Hendawi,et al.  Predictive spatio-temporal queries: a comprehensive survey and future directions , 2012, MobiGIS.

[51]  Peng Cheng,et al.  An improved trajectory prediction algorithm based on trajectory data mining for air traffic management , 2012, 2012 IEEE International Conference on Information and Automation.

[52]  Margaret Martonosi,et al.  Implementing software on resource-constrained mobile sensors: experiences with Impala and ZebraNet , 2004, MobiSys '04.

[53]  Lawrence R. Rabiner,et al.  A tutorial on hidden Markov models and selected applications in speech recognition , 1989, Proc. IEEE.

[54]  Jimeng Sun,et al.  The TPR*-Tree: An Optimized Spatio-Temporal Access Method for Predictive Queries , 2003, VLDB.

[55]  Dong-wan Tcha,et al.  Conduit and cable installation for a centralized network with logical star-star topology , 1995, IEEE Trans. Commun..

[56]  Jean-Marc Alliot,et al.  Using Neural Networks to Predict Aircraft Trajectories , 1999, IC-AI.

[57]  Stefano Spaccapietra,et al.  Semantic trajectories modeling and analysis , 2013, CSUR.

[58]  Xing Xie,et al.  Mining correlation between locations using human location history , 2009, GIS.

[59]  Mathieu Serrurier,et al.  Statistical prediction of aircraft trajectory : regression methods vs point-mass model , 2013 .

[60]  Huayu Wu,et al.  A General and Parallel Platform for Mining Co-Movement Patterns over Large-scale Trajectories , 2016, Proc. VLDB Endow..

[61]  Nikos Pelekis,et al.  Big Data Analytics for Time Critical Mobility Forecasting: Recent Progress and Research Challenges. , 2018 .

[62]  Yu Zheng,et al.  Trajectory Data Mining , 2015, ACM Trans. Intell. Syst. Technol..

[63]  Sajal K. Das,et al.  LeZi-update: an information-theoretic approach to track mobile users in PCS networks , 1999, MobiCom.

[64]  Yufei Tao,et al.  Spatial queries in dynamic environments , 2003, TODS.

[65]  Albert,et al.  Emergence of scaling in random networks , 1999, Science.

[66]  Xiaohui Huang,et al.  A scalable and fast OPTICS for clustering trajectory big data , 2015, Cluster Computing.

[67]  Wang-Chien Lee,et al.  Semantic trajectory mining for location prediction , 2011, GIS.

[68]  A. Rapoport,et al.  Connectivity of random nets , 1951 .

[69]  Alan G. Lee,et al.  Adaptive Algorithm to Improve Trajectory Prediction Accuracy of Climbing Aircraft , 2013 .

[70]  L. R. Rabiner,et al.  A comparative study of several dynamic time-warping algorithms for connected-word recognition , 1981, The Bell System Technical Journal.

[71]  Steven M. Green,et al.  COMMON TRAJECTORY PREDICTION CAPABILITY FOR DECISION SUPPORT TOOLS , 2003 .

[72]  Anna Monreale,et al.  MyWay: Location prediction via mobility profiling , 2017, Inf. Syst..

[73]  Imad Aad,et al.  The Mobile Data Challenge: Big Data for Mobile Computing Research , 2012 .

[74]  Douglas Comer,et al.  Ubiquitous B-Tree , 1979, CSUR.

[75]  Nikos Pelekis,et al.  Online event recognition from moving vessel trajectories , 2016, GeoInformatica.

[76]  Mario A. Rotea,et al.  New Algorithms for Aircraft Intent Inference and Trajectory Prediction , 2007 .

[77]  Thomas Brinkhoff,et al.  A Framework for Generating Network-Based Moving Objects , 2002, GeoInformatica.

[78]  Özgür Ulusoy,et al.  A Quadtree-Based Dynamic Attribute Indexing Method , 1998, Comput. J..

[79]  R. A. Slattery Terminal area trajectory synthesis for air traffic control automation , 1995, Proceedings of 1995 American Control Conference - ACC'95.

[80]  Alexander Artikis,et al.  Probabilistic Complex Event Recognition , 2017, ACM Comput. Surv..

[81]  Dino Pedreschi,et al.  Trajectory pattern mining , 2007, KDD '07.

[82]  Jon Louis Bentley,et al.  Multidimensional binary search trees used for associative searching , 1975, CACM.

[83]  Jack Bresenham,et al.  Algorithm for computer control of a digital plotter , 1965, IBM Syst. J..

[84]  Stéphane Mondoloni Improved Trajectory Information for the Future Flight Planning Environment , 2013 .

[85]  Konstantinos Tserpes,et al.  Predicting Object Trajectories from High-Speed Streaming Data , 2015, TrustCom 2015.

[86]  Yannis Manolopoulos,et al.  R-Trees: Theory and Applications , 2005, Advanced Information and Knowledge Processing.

[87]  Hanan Samet,et al.  The Design and Analysis of Spatial Data Structures , 1989 .

[88]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[89]  Raymond Chi-Wing Wong,et al.  A highly optimized algorithm for continuous intersection join queries over moving objects , 2011, The VLDB Journal.

[90]  H. V. Jagadish,et al.  On Indexing Line Segments , 1990, VLDB.

[91]  Wei-Ying Ma,et al.  Geolife GPS trajectory dataset - User Guide , 2011 .

[92]  Dong Han,et al.  A strategic flight conflict avoidance approach based on a memetic algorithm , 2014 .

[93]  Richard Coppenbarger En route climb trajectory prediction enhancement using airline flight-planning information , 1999 .

[94]  Jian Pei,et al.  Mining frequent patterns without candidate generation , 2000, SIGMOD '00.

[95]  Marios Hadjieleftheriou,et al.  R-Trees - A Dynamic Index Structure for Spatial Searching , 2008, ACM SIGSPATIAL International Workshop on Advances in Geographic Information Systems.

[96]  Özgür Ulusoy,et al.  A data mining approach for location prediction in mobile environments , 2005, Data Knowl. Eng..

[97]  Meng Hu,et al.  TrajPattern: Mining Sequential Patterns from Imprecise Trajectories of Mobile Objects , 2006, EDBT.

[98]  Van Nostrand,et al.  Error Bounds for Convolutional Codes and an Asymptotically Optimum Decoding Algorithm , 1967 .

[99]  Hans-Peter Kriegel,et al.  The R*-tree: an efficient and robust access method for points and rectangles , 1990, SIGMOD '90.

[100]  Steven J. Landry,et al.  A framework of enroute air traffic conflict detection and resolution through complex network analysis , 2011, Comput. Ind..

[101]  Nikos Pelekis,et al.  Mobility Data Management and Exploration , 2014, Springer New York.

[102]  Geoff Holmes,et al.  MOA: Massive Online Analysis , 2010, J. Mach. Learn. Res..

[103]  程学旗,et al.  Location Prediction , 2016, ACM Trans. Intell. Syst. Technol..

[104]  Beng Chin Ooi,et al.  Query and Update Efficient B+-Tree Based Indexing of Moving Objects , 2004, VLDB.

[105]  Pierre Savéant,et al.  Online Learning for Ground Trajectory Prediction , 2012, ArXiv.

[106]  A. Prasad Sistla,et al.  Modeling and querying moving objects , 1997, Proceedings 13th International Conference on Data Engineering.

[107]  Christos Faloutsos,et al.  Analysis of the Clustering Properties of the Hilbert Space-Filling Curve , 2001, IEEE Trans. Knowl. Data Eng..

[108]  Abdeltawab M. Hendawi,et al.  A Framework for Spatial Predictive Query Processing and Visualization , 2015, 2015 16th IEEE International Conference on Mobile Data Management.

[109]  Hans-Peter Kriegel,et al.  A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise , 1996, KDD.

[110]  Paolo Braca,et al.  Performance Assessment of Vessel Dynamic Models for Long-Term Prediction Using Heterogeneous Data , 2017, IEEE Transactions on Geoscience and Remote Sensing.

[111]  Abdeltawab M. Hendawi,et al.  Panda∗: A generic and scalable framework for predictive spatio-temporal queries , 2016, GeoInformatica.

[112]  Donald Ervin Knuth,et al.  The Art of Computer Programming , 1968 .

[113]  Chester Gong,et al.  A METHODOLOGY FOR AUTOMATED TRAJECTORY PREDICTION ANALYSIS , 2004 .

[114]  Dino Pedreschi,et al.  Time-focused clustering of trajectories of moving objects , 2006, Journal of Intelligent Information Systems.

[115]  Jan Mendling,et al.  Detecting Flight Trajectory Anomalies and Predicting Diversions in Freight Transportation (Extended Abstract) , 2016, EMISA.

[116]  Simonas Saltenis Indexing the Positions of Continuously Moving Objects , 2017, Encyclopedia of GIS.

[117]  Beng Chin Ooi,et al.  Effectively Indexing Uncertain Moving Objects for Predictive Queries , 2009, Proc. VLDB Endow..

[118]  Jimeng Sun,et al.  Selectivity estimation for predictive spatio-temporal queries , 2003, Proceedings 19th International Conference on Data Engineering (Cat. No.03CH37405).

[119]  Juliana João Ferreira Statistical model for aircraft trajectory prediction , 2014 .

[120]  Wu Kun,et al.  A 4-D trajectory prediction model based on radar data , 2008, 2008 27th Chinese Control Conference.