A new invariant and parametric connected sum of embeddings

We define an isotopy invariant of embeddings N -> R^m of manifolds into Euclidean space. This invariant together with the \alpha-invariant of Haefliger-Wu is complete in the dimension range where the \alpha-invariant could be incomplete. We also define parametric connected sum of certain embeddings (analogous to surgery). This allows to obtain new completeness results for the \alpha-invariant and the following estimation of isotopy classes of embeddings. For the piecewise-linear category, a (3n-2m+2)-connected n-manifold N and (4n+4)/3 < m < (3n+3)/2 each preimage of \alpha-invariant injects into a quotient of H_{3n-2m+3}(N), where the coefficients are Z for m-n odd and Z_2 for m-n even.

[1]  A. Haefliger,et al.  Plongements différentiables dans le domaine stable , 1962 .

[2]  U. Koschorke On link maps and their homotopy classification , 1990 .

[3]  Dušan D. Repovš,et al.  On the Browder-Levine-Novikov Embedding Theorems , 2021, 2104.01820.

[4]  C. Weber Plongements de polyèdres dans le domaine métastable , 1967 .

[5]  H. Glover,et al.  Note on the embedding of manifolds in Euclidean space , 1971 .

[6]  U. Koschorke Link maps and the geometry of their invariants , 1988 .

[7]  W. Lickorish,et al.  The piecewise linear unknotting of cones , 1965 .

[8]  T. Yasui On the map defined by regarding embeddings as immersions , 1983 .

[9]  A. Skopenkov CLASSIFICATION OF EMBEDDINGS BELOW THE METASTABLE DIMENSION , 2006 .

[10]  S. Donaldson PARTIAL DIFFERENTIAL RELATIONS (Ergebnisse der Mathematik und ihrer Grenzgebiete (3) 9) , 1988 .

[11]  A. Skopenkov Surveys in Contemporary Mathematics: Embedding and knotting of manifolds in Euclidean spaces , 2006, math/0604045.

[12]  Dušan Repovš,et al.  New results on embeddings of polyhedra and manifolds in Euclidean spaces , 1999 .

[13]  足立 正久,et al.  Embeddings and immersions , 1993 .

[14]  E. Akin MANIFOLD PHENOMENA IN THE THEORY OF POLYHEDRA , 1969 .

[15]  n-Quasi-isotopy: I. Questions of nilpotence , 2001, math/0103113.

[16]  M. Kervaire An Interpretation of G. Whitehead's Generalization of H. Hopf's Invariant , 1959 .

[17]  J. Hudson,et al.  Concordance, Isotopy, and Diffeotopy , 1970 .

[18]  J. Hudson,et al.  Extending Piecewise‐Linear Isotopies , 1966 .

[19]  A. Haefliger Plongements différentiables de variétés dans variétés , 1962 .

[20]  Dušan D. Repovš,et al.  Homotopy type of the complement of an immersion and classification of embeddings of tori , 2008, 0803.4285.

[21]  A. Skopenkov,et al.  Embeddings of homology equivalent manifolds with boundary , 2006, 1207.1326.

[22]  A. Skopenkov,et al.  On the Haefliger-Hirsch-Wu invariants for embeddings and immersions , 2002 .

[23]  All two dimensional links are null homotopic , 1999, math/0004021.

[24]  David Bausum Embeddings and immersions of manifolds in Euclidean space , 1975 .

[25]  M. Gromov,et al.  Partial Differential Relations , 1986 .

[26]  Embeddings from the point of view of immersion theory , 1999, math/9905203.

[27]  A. Skopenkov On the deleted product criterion for embeddability of manifolds in Rm , 1998 .

[28]  Embeddings from the point of view of immersion theory: Part II , 1999, math/9905202.

[29]  N. Habegger Obstructions to embedding disks II (a proof of a conjecture of Hudson) , 1984 .

[30]  A. Bartels Higher dimensional links are singular slice , 2001 .

[31]  A. Haefliger Lissage des immersions—I , 1967 .

[32]  C. Rourke,et al.  Introduction to Piecewise-Linear Topology , 1972 .