Interferometry with Bose-Einstein condensates in microgravity

Matter-wave sensors are considered to be one of the most promising fields for progress in metrology and fundamental tests. We report on the development of a miniaturized and robust experiment within the QUANTUS collaboration using ultra cold atoms in a free fall environment as a test-bed for matter-wave interferometry on long timescales. Over 200 experiments in microgravity have been performed so far at the ZARM drop tower in Bremen and a BEC was observed after expansion times of up to 1s [1]. The combination of long expansion times and low density samples is beneficial for the application in interferometry. We present the recently implemented interferometer in our chip-based 87Rb BEC experiment including on-chip state preparation. Bragg diffraction is used for coherent manipulation, realizing different interferometer schemes. First results on ground and in microgravity are shown.

[1]  S. Reynaud,et al.  Ultimate decoherence border for matter-wave interferometry. , 2005, Physical review letters.

[2]  C. Salomon,et al.  Manipulation of Motional Quantum States of Neutral Atoms , 1999 .

[3]  T. Schumm,et al.  Matter-wave interferometry in a double well on an atom chip , 2005 .

[4]  M. Kasevich,et al.  Testing general relativity with atom interferometry. , 2006, Physical review letters.

[5]  Savas Dimopoulos,et al.  Atomic gravitational wave interferometric sensor , 2008, 0806.2125.

[6]  P. Altin,et al.  Cold-atom gravimetry with a Bose-Einstein condensate , 2010, 1011.5804.

[7]  J. Vivanco,et al.  ‡ To whom correspondence should be addressed: , 2022 .

[8]  M. Kozuma,et al.  Mach-Zehnder Bragg interferometer for a Bose-Einstein condensate , 1999, cond-mat/9908160.

[9]  K. Nakagawa,et al.  Atom interferometer using a free oscillation of Bose-Einstein Condensate on an atom chip , 2009 .

[10]  R. Frueholz,et al.  A dressed atom interpretation of adiabatic rapid passage , 1984 .

[11]  Castin,et al.  Bose-Einstein Condensates in Time Dependent Traps. , 1996, Physical review letters.

[12]  R. Lutwak,et al.  Coherent Splitting of Bose-Einstein Condensed Atoms With Optically Induced Bragg Diffraction , 1999 .

[13]  J. Lynn,et al.  Neutron Interferometry: Lessons in Experimental Quantum Mechanics , 2002 .

[14]  József Fortágh,et al.  Magnetic microtraps for ultracold atoms , 2007 .

[15]  E. Álvarez,et al.  Quantum Gravity , 2004, gr-qc/0405107.

[16]  W. Marsden I and J , 2012 .

[17]  M. Scully,et al.  Advances in Atomic, Molecular, and Optical Physics , 2022, Advances In Atomic, Molecular, and Optical Physics.

[18]  Steven Chu,et al.  Atom-interferometry tests of the isotropy of post-Newtonian gravity. , 2007, Physical review letters.

[19]  N. Christensen,et al.  Delta Kick Cooling: A New Method for Cooling Atoms , 1997 .

[20]  A. Peters,et al.  Bose-Einstein Condensation in Microgravity , 2010, Science.

[21]  Dropping cold quantum gases on Earth over long times and large distances , 2006, cond-mat/0610637.

[22]  S. A. Werner,et al.  Observation of Gravitationally Induced Quantum Interference , 1975 .

[23]  Quentin Diot,et al.  Atom Michelson interferometer on a chip using a Bose-Einstein condensate. , 2005, Physical review letters.

[24]  A. Miffre,et al.  Atom interferometry , 2006, quant-ph/0605055.

[25]  Rauch,et al.  Measurement and characterization of the three-dimensional coherence function in neutron interferometry. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[26]  P. Hommelhoff,et al.  Bose–Einstein condensation on a microelectronic chip , 2001, Nature.

[27]  S. Chiow,et al.  102ℏk large area atom interferometers. , 2011, Physical review letters.

[28]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[29]  David E. Pritchard,et al.  Optics and interferometry with atoms and molecules , 2009 .

[30]  C. Wieman,et al.  Nobel Lecture: Bose-Einstein condensation in a dilute gas, the first 70 years and some recent experiments , 2002 .

[31]  W. Ketterle Nobel lecture: When atoms behave as waves: Bose-Einstein condensation and the atom laser* , 2002 .

[32]  A. Landragin,et al.  Detecting inertial effects with airborne matter-wave interferometry , 2011, Nature communications.

[33]  J. Gordon,et al.  Proposal for optically cooling atoms to temperatures of the order of 10-6 K. , 1986, Optics letters.