95.16-Gb/s Mode-Division-Multiplexing Signal Transmission in Free-Space Enabled by Effective-Conversion of Vector Beams

We introduce a high-efficient vector modes (VMs) conversion scheme by using Q-plate (QP) and half-waveplate based on higher-order Poincaré sphere model. Enabled by this simple mode conversion scheme, we demonstrate a 95.16-Gb/s vector-mode-division-multiplexing (VMDM) transmission with direct-detection orthogonal-frequency-division-multiplexing signal over ∼20-cm free space optical link. The mode crosstalk of four typical cylindrical VMs (TE01, TM01, HE21e, and HE21o) are less than −10.3 dB and can be further optimized by high-quality QP. The experimental results indicate that the VMDM technique can be a powerful candidate for large-capacity short-reach optical interconnects.

[1]  Jian Wang,et al.  High-base vector beam encoding/decoding for visible-light communications. , 2015, Optics letters.

[2]  Daniel C. Kilper,et al.  Optical Networks Come of Age , 2014 .

[3]  S. Wen,et al.  Generation of cylindrical vector vortex beams by two cascaded metasurfaces. , 2014, Optics express.

[4]  Xiang Liu,et al.  Intra-symbol frequency-domain averaging based channel estimation for coherent optical OFDM. , 2008, Optics express.

[5]  Daniel A. Nolan,et al.  Mode division multiplexing using an orbital angular momentum mode sorter and MIMO-DSP over a graded-index few-mode optical fibre , 2015, Scientific Reports.

[6]  Siddharth Ramachandran,et al.  Generation and propagation of radially polarized beams in optical fibers. , 2009, Optics letters.

[7]  Jian Wang,et al.  Full-duplex bidirectional data transmission link using twisted lights multiplexing over 1.1-km orbital angular momentum fiber , 2016, Scientific Reports.

[8]  Qiwen Zhan,et al.  Propagation of vector vortex beams through a turbulent atmosphere. , 2009, Optics express.

[9]  L. Nelson,et al.  Space-division multiplexing in optical fibres , 2013, Nature Photonics.

[10]  Chao Lu,et al.  40 Gb/s Mode-Division Multiplexed DD-OFDM Transmission Over Standard Multi-Mode Fiber , 2016, IEEE Photonics Journal.

[11]  Andrew Forbes,et al.  Controlled generation of higher-order Poincaré sphere beams from a laser , 2015, Nature Photonics.

[12]  Dennis G. Hall,et al.  Diffraction characteristics of the azimuthal Bessel–Gauss beam , 1996 .

[13]  Enrico Santamato,et al.  Tunable liquid crystal q-plates with arbitrary topological charge. , 2011, Optics express.

[14]  A. Willner,et al.  Optical communications using orbital angular momentum beams , 2015 .

[15]  Jian Wang,et al.  Demonstration of obstruction-free data-carrying N-fold Bessel modes multicasting from a single Gaussian mode. , 2015, Optics letters.

[16]  Jianjun Yu,et al.  Transmission of 100-Gb/s VSB DFT-Spread DMT Signal in Short-Reach Optical Communication Systems , 2015, IEEE Photonics Journal.

[17]  Guifang Li,et al.  Space-division multiplexing: the next frontier in optical communication , 2014 .

[18]  A. Willner,et al.  4 × 20  Gbit/s mode division multiplexing over free space using vector modes and a q-plate mode (de)multiplexer. , 2014, Optics letters.

[19]  Fan Li,et al.  120 Gbit/s 2 × 2 Vector-Modes-Division- Multiplexing DD-OFDM-32QAM Free-Space Transmission , 2016, IEEE Photonics Journal.

[20]  Q. Zhan Cylindrical vector beams: from mathematical concepts to applications , 2009 .

[21]  Giovanni Milione,et al.  Using the nonseparability of vector beams to encode information for optical communication. , 2015, Optics letters.

[22]  A. Willner,et al.  Terabit free-space data transmission employing orbital angular momentum multiplexing , 2012, Nature Photonics.

[23]  Moshe Tur,et al.  Experimental demonstration of a 200-Gbit/s free-space optical link by multiplexing Laguerre-Gaussian beams with different radial indices. , 2016, Optics letters.

[24]  A. Willner,et al.  Adaptive-optics-based simultaneous pre- and post-turbulence compensation of multiple orbital-angular-momentum beams in a bidirectional free-space optical link , 2014 .

[25]  Xiaocong Yuan,et al.  Generating Arbitrary Order Cylindrical Vector Beams With Inherent Transform Mechanism , 2017, IEEE Photonics Journal.

[26]  Jian Wang,et al.  Data information transfer using complex optical fields: a review and perspective (Invited Paper) , 2017 .

[27]  D. Nolan,et al.  Higher order Pancharatnam-Berry phase and the angular momentum of light. , 2012, Physical review letters.

[28]  Michal Lipson,et al.  WDM-compatible mode-division multiplexing on a silicon chip , 2014, Nature Communications.

[29]  Peng Chen,et al.  Generation of arbitrary vector beams with liquid crystal polarization converters and vector-photoaligned q-plates , 2015 .

[30]  O. Edfors,et al.  Is Orbital Angular Momentum (OAM) Based Radio Communication an Unexploited Area? , 2012, IEEE Transactions on Antennas and Propagation.

[31]  Shuangchun Wen,et al.  Generation of arbitrary vector vortex beams on hybrid-order Poincaré sphere , 2017 .

[32]  L. Marrucci,et al.  Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media. , 2006, Physical review letters.

[33]  Naresh Chand,et al.  First Demonstration of Six-Mode PON Achieving a Record Gain of 4 dB in Upstream Transmission Loss Budget , 2016, Journal of Lightwave Technology.

[34]  Dennis G. Hall,et al.  Properties and diffraction of vector Bessel–Gauss beams , 1998 .

[35]  Peter J. Winzer,et al.  Spatial Multiplexing in Fiber Optics: The 10X Scaling of Metro/Core Capacities , 2014, Bell Labs Tech. J..

[36]  Changyuan Yu,et al.  Massive individual orbital angular momentum channels for multiplexing enabled by Dammann gratings , 2015, Light: Science & Applications.

[37]  M Stalder,et al.  Linearly polarized light with axial symmetry generated by liquid-crystal polarization converters. , 1996, Optics letters.