Mid-infrared supercontinuum generation from 2 to 14 m in arsenic-and antimony-free chalcogenide glass fibers

We demonstrate the fabrication of arsenicand antimony-free chalcogenide glasses compatible with glass fiber processing. Optical fibers with distinct index profiles are presented and characterized, namely single material fibers with or without a suspended core and standard step-index fibers with varying core diameter. In addition, we evidence their potential for nonlinear photonic devices in the mid-infrared spectral region by means of supercontinuum generation experiments in the femtosecond regime. Spectral broadenings are obtained, extending on several octaves in the mid IR from 2 to 14 μm. © 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement OCIS codes: (000.0000) General; (000.2700) General science.

[1]  B. Luther-Davies,et al.  Low loss, high NA chalcogenide glass fibers for broadband mid-infrared supercontinuum generation , 2015 .

[2]  F. Smektala,et al.  Fabrication and characterization of step-index tellurite fibers with varying numerical aperture for near- and mid-infrared nonlinear optics , 2016 .

[3]  A. K. Mairaj,et al.  A study of environmental effects on the attenuation of chalcogenide optical fibre , 2005 .

[4]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[5]  L. G Aio,et al.  Refractive index of chalcogenide glasses over a wide range of compositions , 1978 .

[6]  Xiang Shen,et al.  Mid‐infrared supercontinuum covering 2.0–16 μm in a low‐loss telluride single‐mode fiber , 2017 .

[7]  H. Giessen,et al.  High repetition rate mid-infrared supercontinuum generation from 1 . 3 to 5 . 3 μ m in robust step-index tellurite fibers , 2017 .

[8]  L. Brilland,et al.  Microstructured chalcogenide optical fibers from As(2)S(3) glass: towards new IR broadband sources. , 2010, Optics express.

[9]  D. Hubbard,et al.  Properties of arsenic sulfide glass , 1957 .

[10]  Vladimir Shiryaev,et al.  Recent advances in preparation of high-purity chalcogenide glasses for mid-IR photonics , 2017 .

[11]  Jacques Lucas,et al.  A Family of Far‐Infrared‐Transmitting Glasses in the Ga–Ge–Te System for Space Applications , 2006 .

[12]  Ming-Jun Li,et al.  Supercontinuum generation in optical fibers , 2007, SPIE/OSA/IEEE Asia Communications and Photonics.

[13]  Jean-Luc Adam,et al.  Infrared fibers based on Te–As–Se glass system with low optical losses , 2004 .

[14]  Jean-Luc Adam,et al.  GeSe4 glass fibres with low optical losses in the mid-IR , 2009 .

[15]  Bruno Bureau,et al.  Development of Far‐Infrared‐Transmitting Te Based Glasses Suitable for Carbon Dioxide Detection and Space Optics , 2007 .

[16]  Y. Messaddeq,et al.  Investigation of the drawing region in the production of Ge-S-I optical fibers for infrared applications , 2017 .

[17]  S. Dai,et al.  Ultrabroad supercontinuum generated from a highly nonlinear Ge-Sb-Se fiber. , 2016, Optics letters.

[18]  Xiang Shen,et al.  1.5-14  μm midinfrared supercontinuum generation in a low-loss Te-based chalcogenide step-index fiber. , 2016, Optics letters.

[19]  Houizot Patrick,et al.  Selenide glass single mode optical fiber for nonlinear optics , 2007 .

[20]  X. H. Zhang,et al.  Telluride Glass Step Index Fiber for the far Infrared , 2010, Journal of Lightwave Technology.

[21]  Xiang Shen,et al.  Systematic z-scan measurements of the third order nonlinearity of chalcogenide glasses , 2014 .

[22]  Michel Piché,et al.  Watt-level fiber-based femtosecond laser source tunable from 2.8 to 3.6  μm. , 2016, Optics letters.

[23]  Yi Yu,et al.  Multi-milliwatt mid-infrared supercontinuum generation in a suspended core chalcogenide fiber. , 2015, Optics express.

[24]  A. Jha,et al.  Engineering of a Ge-Te-Se glass fibre evanescent wave spectroscopic (FEWS) mid-IR chemical sensor for the analysis of food and pharmaceutical products , 2015 .

[25]  E. M. Dianov,et al.  High-purity chalcogenide glasses for fiber optics , 2009 .

[26]  Yi Yu,et al.  High brightness 2.2-12 μm mid-infrared supercontinuum generation in a nontoxic chalcogenide step-index fiber , 2016 .

[27]  Ole Bang,et al.  Mid-infrared multispectral tissue imaging using a chalcogenide fiber supercontinuum source. , 2018, Optics letters.

[28]  James S. Wilkinson,et al.  High-contrast GeTe4 waveguides for mid-infrared biomedical sensing applications , 2014, Photonics West - Optoelectronic Materials and Devices.

[29]  Application of the Clausius-Mossotti equation to dispersion calculations in optical fibers , 1985, Journal of Lightwave Technology.

[30]  J. Adam,et al.  Calorimetric study of characteristic temperatures and crystallization behavior in Ge–As–Se–Te glass system , 2004 .

[31]  A. M. Potapov,et al.  Preparation of High Purity Te-Rich Ge-Te-Se Fibers for 5–15 $\mu$ m Infrared Range , 2013, Journal of Lightwave Technology.

[32]  Ishwar D. Aggarwal,et al.  Fabrication of Arsenic Sulfide Optical Fiber with Low Hydrogen Impurities , 2002 .

[33]  L. Brilland,et al.  Strong infrared spectral broadening in low-loss As-S chalcogenide suspended core microstructured optical fibers. , 2010, Optics express.

[34]  F. Amrani,et al.  Multioctave midinfrared supercontinuum generation in suspended-core chalcogenide fibers. , 2014, Optics letters.

[35]  Johann Troles,et al.  Telluride glass single mode fiber for mid and far infrared filtering , 2016 .

[36]  V. G. Plotnichenko,et al.  HIGH-PURITY GLASSES BASED ON ARSENIC CHALCOGENIDES , 2001 .

[37]  Max Diem,et al.  Roadmap on optical sensors , 2017, Journal of optics.

[38]  F. Smektala,et al.  Compact supercontinuum sources based on tellurite suspended core fibers for absorption spectroscopy beyond 2 μm , 2016 .

[39]  Caroline Vigreux,et al.  Wide-range transmitting chalcogenide films and development of micro-components for infrared integrated optics applications , 2014 .

[40]  Takenobu Suzuki,et al.  Enhanced Raman gain of Ge–Ga–Sb–S chalcogenide glass for highly nonlinear microstructured optical fibers , 2011 .