Antiplasmodial Activity of Hydroalcoholic Extract from Jucá (Libidibia ferrea) Pods

Malaria is an infectious and parasitic disease caused by protozoa of the genus Plasmodium, which affects millions of people in tropical and subtropical areas. Recently, there have been multiple reports of drug resistance in Plasmodium populations, leading to the search for potential new active compounds against the parasite. Thus, we aimed to evaluate the in vitro antiplasmodial activity and cytotoxicity of the hydroalcoholic extract of Jucá (Libidibia ferrea) in serial concentrations. Jucá was used in the form of a freeze-dried hydroalcoholic extract. For the cytotoxicity assay, the(3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) method with the WI-26VA4 human cell line was used. For the antiplasmodial activity, Plasmodium falciparum synchronized cultures were treated with serial concentrations (0.2 to 50 μg/mL) of the Jucá extract. In terms of the chemical composition of the Jucá extract, gas chromatography coupled to mass spectrometry measurements revealed the main compounds as ellagic acid, valoneic acid dilactone, gallotannin, and gallic acid. The Jucá hydroalcoholic extract did not show cytotoxic activity per MTT, with an IC50 value greater than 100 µg/mL. Regarding the antiplasmodial activity, the Jucá extract presented an IC50 of 11.10 µg/mL with a selective index of nine. Because of its antiplasmodial activity at the tested concentrations and low toxicity, the Jucá extract is presented as a candidate for herbal medicine in the treatment of malaria. To the best of our knowledge, this is the first report of antiplasmodial activity in Jucá.

[1]  M. M. da Costa,et al.  Toxicidade do extrato vegetal, óleo essencial e hidrolato das plantas Zingiber officinale Roscoe e Allium sativum L. / Toxicity of plant extract, essential oil and hydrolate of Zingiber officinale Roscoe and Allium sativum L. Plants , 2022, Brazilian Journal of Development.

[2]  A. Sartoratto,et al.  Anti-Inflammatory Potential of the Oleoresin from the Amazonian Tree Copaifera reticulata with an Unusual Chemical Composition in Rats , 2021, Veterinary sciences.

[3]  A. Sartoratto,et al.  Chemical Composition and Antiproliferative Activity of the Ethanolic Extract of Cyperus articulatus L. (Cyperaceae) , 2021, Plants.

[4]  A. Krettli,et al.  Studies on Activities and Chemical Characterization of Medicinal Plants in Search for New Antimalarials: A Ten Year Review on Ethnopharmacology , 2021, Frontiers in Pharmacology.

[5]  M. Ramharter,et al.  Drug-induced hypersensitivity to artemisinin-based therapies for malaria. , 2021, Trends in parasitology.

[6]  L. Barata,et al.  Chemical Composition and In Vitro Antiplasmodial Activity of the Ethanolic Extract of Cyperus articulatus var. nodosus Residue , 2020, Pathogens.

[7]  D. Kwiatkowski,et al.  Molecular epidemiology of resistance to antimalarial drugs in the Greater Mekong subregion: an observational study , 2020, The Lancet. Infectious diseases.

[8]  L. Barata,et al.  Efficacy of Phytopharmaceuticals From the Amazonian Plant Libidibia ferrea for Wound Healing in Dogs , 2020, Frontiers in Veterinary Science.

[9]  C. Nsanzabana Resistance to Artemisinin Combination Therapies (ACTs): Do Not Forget the Partner Drug! , 2019, Tropical medicine and infectious disease.

[10]  P. Lutgen Tannins in Artemisia: the hidden treasure of prophylaxis , 2018 .

[11]  Ana Paula Girol,et al.  Avaliação da atividade antimicrobiana e citotoxicidade hemolítica em diferentes extratos vegetais , 2018 .

[12]  A. Bhagavathula,et al.  Alternatives to currently used antimalarial drugs: in search of a magic bullet , 2016, Infectious Diseases of Poverty.

[13]  S. Mertens-Talcott,et al.  In vitro antimalarial activity of microbial metabolites from mango tannins (Mangifera indica L.) , 2016 .

[14]  A. Adekunle,et al.  Phytochemical screening and in vivo antimalarial activity of extracts from three medicinal plants used in malaria treatment in Nigeria , 2015, Parasitology Research.

[15]  Letícia Silva Magalhães,et al.  Avaliação da atividade antibacteriana do extrato de Caesalpinia ferrea Martius e desenvolvimento de uma formulação fitocosmética , 2015 .

[16]  Jean Berg Alves da Silva,et al.  ATIVIDADE ANTIBACTERIANA DA CASCA DO JUCÁ (Libidibia ferrea (Mart. ex Tul.) L. P. Queiroz), FRENTE A Staphylococcus spp. ISOLADOS DO LEITE DE CABRAS COM MASTITE , 2015 .

[17]  Henrique Coutinho Henrique Avaliação da atividade antimicrobiana e moduladora do extrato etanólico de Libidibia ferrea (Mart. ex Tul.) L.P. Queiroz , 2015 .

[18]  J. S. Militão,et al.  Antimalarial ethnopharmacology in the Brazilian Amazon , 2015 .

[19]  V. Almeida,et al.  Avaliação fitoquímica e potencial cicatrizante do extrato etanólico dos frutos de Jucá (Libidibia ferrea) em ratos Wistar , 2015 .

[20]  B. Genton,et al.  A molecular marker of artemisinin-resistant Plasmodium falciparum malaria , 2013, Nature.

[21]  M. Patarroyo,et al.  Reticulocytes: Plasmodium vivax target cells , 2013, Biology of the cell.

[22]  A. Freitas Atividades biológicas de preparações obtidas de Libidibia (Caesalpinia) ferrea var. parvifolia (Mart. ex Tul.) L. P. Queiroz , 2012 .

[23]  T. França,et al.  Antimalarial Activity and Mechanisms of Action of Two Novel 4-Aminoquinolines against Chloroquine-Resistant Parasites , 2012, PloS one.

[24]  A. Lima,et al.  Cytotoxicity evaluation of marine alkaloid analogues of viscosaline and theonelladin C , 2012 .

[25]  R. Siqueira-Batista,et al.  Malária grave por Plasmodium falciparum , 2011 .

[26]  R. Schneider-Stock,et al.  Gallotannin inhibits NFĸB signaling and growth of human colon cancer xenografts , 2011, Cancer biology & therapy.

[27]  H. Chung,et al.  A novel epoxypropoxy flavonoid derivative and topoisomerase II inhibitor, MHY336, induces apoptosis in prostate cancer cells. , 2011, European journal of pharmacology.

[28]  Rosemeiry Capriata de Souza Azevedo,et al.  ADESÃO E REAÇÕES DE USUÁRIOS AO TRATAMENTO DA MALÁRIA: IMPLICAÇÕES PARA A EDUCAÇÃO EM SAÚDE , 2010 .

[29]  J. S. Batista,et al.  Evaluation of the Brazilian ironwood (Caesalpinia ferrea Mart. ex Tul. var. ferrea) healing activity on cutaneous lesions of goats. , 2010 .

[30]  P. Siba,et al.  In vitro sensitivity of Plasmodium falciparum to conventional and novel antimalarial drugs in Papua New Guinea , 2010, Tropical medicine & international health : TM & IH.

[31]  Mauricio da Silva Sopezki,et al.  Descrição morfológica da plântula e diásporos de Caesalpinia ferrea Mart. , 2008 .

[32]  Hussien O. AlKadi,et al.  Antimalarial Drug Toxicity: A Review , 2007, Chemotherapy.

[33]  A. Van Schepdael,et al.  Investigation of sorbic acid volatile degradation products in pharmaceutical formulations using static headspace gas chromatography. , 2007, Journal of pharmaceutical and biomedical analysis.

[34]  D. Ferreira,et al.  Antioxidant, antimalarial and antimicrobial activities of tannin-rich fractions, ellagitannins and phenolic acids from Punica granatum L. , 2007, Planta medica.

[35]  Carlos Alberto Malheiros,et al.  Uso de teste de químio-sensibilidade para escolha da quimioterapia adjuvante no câncer gástrico avançado , 2006 .

[36]  Fabiana Gaspar Gonzalez Estudo farmacognóstico e farmacológico de Caesalpinia ferrea Martius , 2005 .

[37]  P. Wilairat,et al.  Simple and Inexpensive Fluorescence-Based Technique for High-Throughput Antimalarial Drug Screening , 2004, Antimicrobial Agents and Chemotherapy.

[38]  David J Newman,et al.  Natural products as sources of new drugs over the period 1981-2002. , 2003, Journal of natural products.

[39]  J. Calixto,et al.  Biological activity of plant extracts: novel analgesic drugs , 2001, Expert opinion on emerging drugs.

[40]  C. Lang,et al.  In vitro and In vivo inhibition of LPS-stimulated tumor necrosis factor-α secretion by the gallotannin β-d-pentagalloylglucose , 2001 .

[41]  S. Steinberg,et al.  Chemosensitivity testing of human colorectal carcinoma cell lines using a tetrazolium-based colorimetric assay. , 1987, Cancer research.

[42]  J. Minna,et al.  Evaluation of a tetrazolium-based semiautomated colorimetric assay: assessment of radiosensitivity. , 1987, Cancer research.

[43]  F. Denizot,et al.  Rapid colorimetric assay for cell growth and survival. Modifications to the tetrazolium dye procedure giving improved sensitivity and reliability. , 1986, Journal of immunological methods.

[44]  C. Lambros,et al.  Synchronization of Plasmodium falciparum erythrocytic stages in culture. , 1979, The Journal of parasitology.

[45]  W. Trager,et al.  Human malaria parasites in continuous culture. , 1976, Science.

[46]  H. D. Coutinho,et al.  Práticas terapêuticas tradicionais: uso e conhecimento de plantas do cerrado no estado de Pernambuco (Nordeste do Brasil) , 2015 .

[47]  Kelly Goulart Lima AVALIAÇÃO DO EFEITO DO ÁCIDO GÁLICO NO TRATAMENTO DE CÉLULAS DE HEPATOCARCINOMA HEPG2 , 2014 .

[48]  J. C. R. Vellosa,et al.  Avaliação das atividades antioxidante, anti e pró-hemolítica do extrato etanólico das folhas de Pterogyne nitens Tul. (Fabaceae-Caesalpinioideae) , 2012 .

[49]  N. Manzoor,et al.  Evolution of ergosterol biosynthesis inhibitors as fungicidal against Candida. , 2010, Microbial pathogenesis.

[50]  Tanos C. C. França,et al.  Malária: aspectos históricos e quimioterapia , 2008 .

[51]  V. Schulz,et al.  Medicinal Plants, Phytomedicines, and Phytotherapy , 1998 .

[52]  Harri Lorenzi,et al.  Árvores brasileiras : manual de identificac̦ão e cultivo de plantas arbóreas nativas do Brasil , 1992 .