Analysis of visual search features

While user accesses a user interface, visually searching for a particular object is inevitably accomplished. Visually searching for information, one of the fastest and most useful way of finding information over a variety of user interfaces is driven by different features associated with it. Further, the level of significances of a feature may vary from one interface to another. This paper proposes an exhaustive way to identify visual features associated with virtual keyboard interfaces. First, we list all visual features which user interface designers usually refer. Next, a user-based evolution has been carried out to find out the applicability of different visual features in the context of virtual keyboard interfaces. Finally, we identify visual features having considerable impact on visual search task, related to virtual keyboards. Outcome of this research would be useful to develop a computational model to predict visual search time, which then can be applied to evaluate virtual keyboard designs.

[1]  Edward E. Smith,et al.  An Invitation to cognitive science , 1997 .

[2]  Jeremy M. Wolfe Guided Search 4.0: A guided search model that does not require memory for rejected distractors , 2010 .

[3]  Soumalya Ghosh,et al.  An Approach to Design Virtual Keyboards for Text Composition in Indian Languages , 2013, Int. J. Hum. Comput. Interact..

[4]  W. E. Hick Quarterly Journal of Experimental Psychology , 1948, Nature.

[5]  Joe Marks,et al.  Human-Guided Simple Search , 2000, AAAI/IAAI.

[6]  Bonnie E. John,et al.  Multipurpose prototypes for assessing user interfaces in pervasive computing systems , 2005, IEEE Pervasive Computing.

[7]  J. Wolfe,et al.  Guided Search 2.0 A revised model of visual search , 1994, Psychonomic bulletin & review.

[8]  R. Hyman Stimulus information as a determinant of reaction time. , 1953, Journal of experimental psychology.

[9]  J E Hoffman,et al.  Search through a sequentially presented visual display , 1978, Perception & psychophysics.

[10]  Eyal M. Reingold,et al.  Area activation: a computational model of saccadic selectivity in visual search , 2003, Cogn. Sci..

[11]  Michael D. Byrne,et al.  Modeling the Visual Search of Displays: A Revised ACT-R Model of Icon Search Based on Eye-Tracking Data , 2006, Hum. Comput. Interact..

[12]  J. L. Barbur,et al.  Eye movements and search performance , 1993 .

[13]  Arthur F Kramer,et al.  Aging, memory and visual search. , 2006, Acta psychologica.

[14]  Austen Clark Some logical features of feature integration , 2002 .

[15]  David E. Kieras,et al.  Using GOMS for user interface design and evaluation: which technique? , 1996, TCHI.

[16]  Alan B. Bond,et al.  The Bead Game: Response Strategies in Free Assortment , 1982 .

[17]  J. Findlay,et al.  Visual search in depth , 2001, Vision Research.

[18]  J. Wolfe,et al.  What Can 1 Million Trials Tell Us About Visual Search? , 1998 .

[19]  J E Hoffman,et al.  A two-stage model of visual search , 1979, Perception & psychophysics.

[20]  Richard L. Lewis,et al.  Supporting efficient development of cognitive models at multiple skill levels: exploring recent advances in constraint-based modeling , 2005, CHI.

[21]  Gerald L. Lohse,et al.  A Cognitive Model for Understanding Graphical Perception , 1993, Hum. Comput. Interact..

[22]  A. Treisman,et al.  A feature-integration theory of attention , 1980, Cognitive Psychology.

[23]  Michael D. Byrne,et al.  Unintended effects: varying icon spacing changes users' visual search strategy , 2004, CHI.

[24]  I. Scott MacKenzie,et al.  The design and evaluation of a high-performance soft keyboard , 1999, CHI '99.

[25]  Seth A. Herd,et al.  Serial visual search from a parallel model , 2005, Vision Research.

[26]  Allen L. Nagy,et al.  Effects of target and distractor heterogeneity on search for a color target , 2005, Vision Research.

[27]  Bonnie E. John,et al.  Towards a Tool for Predicting Goal-directed Exploratory Behavior , 2008 .

[28]  Susan L. Franzel,et al.  Guided search: an alternative to the feature integration model for visual search. , 1989, Journal of experimental psychology. Human perception and performance.

[29]  Ravindra S. Goonetilleke,et al.  Visual search strategies and eye movements when searching Chinese character screens , 2002, Int. J. Hum. Comput. Stud..

[30]  David E. Kieras,et al.  An Overview of the EPIC Architecture for Cognition and Performance With Application to Human-Computer Interaction , 1997, Hum. Comput. Interact..

[31]  Risto Näsänen,et al.  Effect of image contrast and sharpness on visual search for computer icons , 2003 .

[32]  John R. Anderson,et al.  Eye tracking the visual search of click-down menus , 1999, CHI '99.

[33]  J. Duncan,et al.  Visual search and stimulus similarity. , 1989, Psychological review.

[34]  Preeti Verghese,et al.  The psychophysics of visual search , 2000, Vision Research.

[35]  Kumiko Tanaka-Ishii,et al.  Text Entry Systems: Mobility, Accessibility, Universality , 2007 .

[36]  Anthony J. Hornof,et al.  Visual search and mouse-pointing in labeled versus unlabeled two-dimensional visual hierarchies , 2001, TCHI.

[37]  Gregory J. Zelinsky,et al.  Searching for camouflaged targets: Effects of target-background similarity on visual search , 2006, Vision Research.