Rough sets (abstract)

A rapid growth of interest in rough set theory 290] and its applications can be lately seen in the number of international workshops, conferences and seminars that are either directly dedicated to rough sets, include the subject in their programs, or simply accept papers that use this approach to solve problems at hand. A large number of high quality papers on various aspects of rough sets and their applications have been published in recent years as a result of this attention. The theory has been followed by the development of several software systems that implement rough set operations. In Section 12 we present a list of software systems based on rough sets. Some of the toolkits, provide advanced graphical environments that support the process of developing and validating rough set classiiers. Rough sets are applied in many domains, Several applications have revealed the need to extend the traditional rough set approach. A special place among various extensions is taken by the approach that replaces indiscernibility relation based on equivalence with a tolerance relation. In view of many generalizations, variants and extensions of rough sets a uniform presentation of the theory and methodology is in place. This tutorial paper is intended to fulllll these needs. It introduces basic notions and illustrates them with simple examples. It discusses methodologies for analysing data and surveys applications. It also presents and introduction to logical, algebraic and topological aspects, major extensions to standard rough sets, and it nally glances at future research.

[1]  Roman Slowinski,et al.  Rough Set Learning of Preferential Attitude in Multi-Criteria Decision Making , 1993, ISMIS.

[2]  Cecylia Rauszer,et al.  Knowledge Representation Systems for Groups of Agents , 1994 .

[3]  Roman Slowinski,et al.  Analysis of Diagnostic Symptoms in Vibroacoustic Diagnostics by Means of the Rough Sets Theory , 1992, Intelligent Decision Support.

[4]  Stephen D. Comer,et al.  An algebraic approach to the approximation of information , 1991, Fundamenta Informaticae.

[5]  H. Rasiowa,et al.  Approximating sets with equivalence relations , 1986, ISMIS '86.

[6]  W. Ziarko,et al.  Rough sets applied to materials data , 1996 .

[7]  Theresa Beaubouef,et al.  A Rough Set Model for Relational Databases , 1993, RSKD.

[8]  Wojciech Ziarko,et al.  The Discovery, Analysis, and Representation of Data Dependencies in Databases , 1991, Knowledge Discovery in Databases.

[9]  Andrzej Skowron,et al.  Synthesis of Decision Systems from Data Tables , 1997 .

[10]  L. Godo,et al.  On the relationship between preference and similarity-based approaches to possibilistic reasoning , 1993, [Proceedings 1993] Second IEEE International Conference on Fuzzy Systems.

[11]  Andrzej Skowron,et al.  Boolean Reasoning for Feature Extraction Problems , 1997, ISMIS.

[12]  A. Czyzewski,et al.  Some methods for detection and interpolation of impulsive distortions in old audio recordings , 1995, Proceedings of 1995 Workshop on Applications of Signal Processing to Audio and Accoustics.

[13]  Hiroshi Tanaka,et al.  Automated Selection of Rule Induction Methods Based on Recursive Iteration of Resampling Methods and Multiple Statistical Testing , 1995, KDD.

[14]  Toru Ishida,et al.  Parallel, Distributed and Multiagent Production Systems , 1994, Lecture Notes in Computer Science.

[15]  Tsau Young Lin,et al.  A Review of Rough Set Models , 1997 .

[16]  Zdzisław Pawlak,et al.  Rough sets and information systems , 1988 .

[17]  Andrzej Lenarcik,et al.  Rule Induction With Probabilistic Rough Classifiers , 1996 .

[18]  Massimo Paruccini,et al.  Applying multiple criteria aid for decision to environmental management. , 1994 .

[19]  J. Krysiński,et al.  Application of the rough sets theory to the analysis of structure-activity-relationships of antimicrobial pyridinium compounds. , 1995, Die Pharmazie.

[20]  Ewa Orlowska,et al.  Logic of nondeterministic information , 1985, Stud Logica.

[21]  J. Grzymala-Busse Managing uncertainty in expert systems , 1991 .

[22]  Maciej Kandulski,et al.  Surgical Wound Infection - Conducive Factors and Their Mutual Dependencies , 1992, Intelligent Decision Support.

[23]  Günther Ruhe,et al.  Knowledge Discovery from Software Engineering Data: Rough Set Analysis and Its Interaction with Goal-Oriented Measurement , 1997, PKDD.

[24]  Andrzej Lenarcik,et al.  Probabilistic Rough Classifiers with Mixtures of Discrete and Continuous Attributes , 1997 .

[25]  Stéphane Demri,et al.  A Class of Information Logics with a Decidable Validity Problem , 1996, MFCS.

[26]  Ivo Düntsch,et al.  Algebraic Aspects of Attribute Dependencies in Information Systems , 1997, Fundam. Informaticae.

[27]  Jerzy Tyszkiewicz,et al.  Probabilistic properties of approximation problems , 1991 .

[28]  Jerzy W. Grzymala-Busse,et al.  Machine learning for an expert system to predict preterm birth risk. , 1994, Journal of the American Medical Informatics Association : JAMIA.

[29]  Andrzej Skowron,et al.  A Rough Set Framework for Data Mining of Propositional Default Rules , 1996, ISMIS.

[30]  Hiroshi Tanaka,et al.  Incremental learning of probabilistic rules from clinical databases based on rough set theory , 1997, AMIA.

[31]  Andrzej Skowron,et al.  Dynamic Reducts as a Tool for Extracting Laws from Decisions Tables , 1994, ISMIS.

[32]  Tsau Young Lin,et al.  Fuzzy Reasoning and Rough Sets , 1993, RSKD.

[33]  Ewa Orlowska Information Algebras , 1995, AMAST.

[34]  Andrzej Skowron,et al.  Rough Set Approximations of Languages , 1997, Fundam. Informaticae.

[35]  Jerzy W. Grzymala-Busse,et al.  Data compression in machine learning applied to natural language , 1993 .

[36]  A. Mrozek,et al.  The methodology of rough controller synthesis , 1996, Proceedings of IEEE 5th International Fuzzy Systems.

[37]  Zdzislaw Pawlak,et al.  On a problem concerning dependence spaces , 1992, Fundam. Informaticae.

[38]  Andrzej Skowron,et al.  Learning Tolerance Relations by Boolean Descriptors: Automatic Feature Extraction from Data Tables , 1996 .

[39]  Eithan Ephrati,et al.  Divide and Conquer in Multi-Agent Planning , 1994, AAAI.

[40]  Roman Slowinski,et al.  The Rough Sets Approach to Knowledge Analysis for Classification Support in Technical Diagnostics of Mechanical Objects , 1992, IEA/AIE.

[41]  Robert E. Kent,et al.  Rough Concept Analysis: A Synthesis of Rough Sets and Formal Concept Analysis , 1996, Fundam. Informaticae.

[42]  Beata Konikowska,et al.  A Logic for Reasoning about Relative Similarity , 1997, Stud Logica.

[43]  Padmini Srinivasan,et al.  Intelligent information retrieval using rough set approximations , 1989, Inf. Process. Manag..

[44]  D. Dubois,et al.  ROUGH FUZZY SETS AND FUZZY ROUGH SETS , 1990 .

[45]  R. Słowiński,et al.  Rough sets analysis of diagnostic capacity of vibroacoustic symptoms , 1992 .

[46]  Ron Kohavi,et al.  Supervised and Unsupervised Discretization of Continuous Features , 1995, ICML.

[47]  Mohua Banerjee,et al.  Rough Sets and 3-Valued Lukasiewicz Logic , 1997, Fundam. Informaticae.

[48]  Roman Słowiński,et al.  Evaluation of vibroacoustic diagnostic symptoms by means of the rough sets theory , 1992 .

[49]  Didier Dubois,et al.  Readings in Fuzzy Sets for Intelligent Systems , 1993 .

[50]  Hiroshi Tanaka,et al.  Machine Discovery of Functional Components of Proteins from Amino-Acid Sequences Based on Rough Sets and Change of Representation , 1996, Intell. Autom. Soft Comput..

[51]  L. Polkowski,et al.  Concerning mathematical morphology of rough sets , 1994 .

[52]  Jerzy W. Grzymala-Busse,et al.  A New Version of the Rule Induction System LERS , 1997, Fundam. Informaticae.

[53]  Hiroshi Tanaka,et al.  PRIMEROSE: PROBABILISTIC RULE INDUCTION METHOD BASED ON ROUGH SETS AND RESAMPLING METHODS , 1995, Comput. Intell..

[54]  Xiaohua Hu,et al.  Rough Sets Similarity-Based Learning from Databases , 1995, KDD.

[55]  Nick Cercone,et al.  Discovering Rules from Data for Water Demand Prediction , 1995 .

[56]  J. Grzymala-Busse,et al.  Global temperature stability by rule induction: An interdisciplinary bridge , 1994 .

[57]  Ewa Orlowska,et al.  Representation of Nondeterministic Information , 1984, Theor. Comput. Sci..

[58]  Z. Ras,et al.  Answering System for an Incomplete DKBS , 2022 .

[59]  Z. Pawlak Rough sets and fuzzy sets , 1985 .

[60]  Anita Wasilewska,et al.  On rough and LT-fuzzy sets , 1996, Soft Computing in Intelligent Systems and Information Processing. Proceedings of the 1996 Asian Fuzzy Systems Symposium.

[61]  Bozena Kostek,et al.  Parametric Representation of Musical Phrases , 1996 .

[62]  Zbigniew Suraj,et al.  An Application of Rough Set Methods to Cooperative Information Systems Re-engineering , 1996 .

[63]  Wojciech Ziarko,et al.  Variable Precision Rough Set Model , 1993, J. Comput. Syst. Sci..

[64]  A. Wasilewska Topological Rough Algebras , 1997 .

[65]  A. Tversky Features of Similarity , 1977 .

[66]  Bernard Roy,et al.  Main sources of inaccurate determination, uncertainty and imprecision in decision models , 1989 .

[67]  Tsau Young Lin,et al.  First-Order Rough Logic I: Approximate Reasoning via Rough Sets , 1996, Fundam. Informaticae.

[68]  Xiaohua Hu,et al.  Learning maximal generalized decision rules via discretization, generalization and rough set feature selection , 1997, Proceedings Ninth IEEE International Conference on Tools with Artificial Intelligence.

[69]  Bernard Roy,et al.  Decision science or decision-aid science? , 1993 .

[70]  Cecylia Rauszer,et al.  Dependencies in relational databases algebraic and logical approach , 1993 .

[71]  Zbigniew Suraj,et al.  Discovery of Concurrent Data Models from Experimental Tables: A Rough Set Approach , 1995, Fundam. Informaticae.

[72]  Nick Cercone,et al.  Using Rough Sets as Tools for Knowledge Discovery , 1995, KDD.

[73]  Tsau Young Lin,et al.  Rough Sets and Data Mining: Analysis of Imprecise Data , 1996 .

[74]  Andrzej Czyzewski,et al.  Mining Knowledge in Noisy Audio Data , 1996, KDD.

[75]  Andrzej Czyzewski,et al.  Learning algorithms for audio signal enhancement. Part 1: Neural network implementation for the removal of impulse distortions , 1997 .

[76]  Jan Komorowski,et al.  Modelling cardiac patient set residuals using rough sets , 1997, AMIA.

[77]  Ewa Orlowska,et al.  Verisimilitude based on concept analysis , 1990, Stud Logica.

[78]  Nick Cercone,et al.  Applying Knowledge Discovery to Predict Water-Supply Consumption , 1997, IEEE Expert.

[79]  Adam Mrózek,et al.  RULE‐BASED STABILIZATION OF THE INVERTED PENDULUM , 1995, Comput. Intell..

[80]  Aleksander Ohrn,et al.  ROSETTA -- A Rough Set Toolkit for Analysis of Data , 1997 .

[81]  Janusz Zalewski,et al.  Rough sets: Theoretical aspects of reasoning about data , 1996 .

[82]  Roman Slowinski,et al.  Handling Various Types of Uncertainty in the Rough Set Approach , 1993, RSKD.

[83]  Toshinori Munakata,et al.  Rough Control: A Perspective , 1997 .

[84]  Andrzej Skowron,et al.  Towards a Rough Mereology-Based Logic for Approximate Solution Synthesis. Part 1 , 1997, Stud Logica.

[85]  Piero Pagliani,et al.  From Concept Lattices to Approximation Spaces: Algebraic Structures of Some Spaces of Partial Objects , 1993, Fundam. Informaticae.

[86]  Didier Dubois,et al.  Fuzzy sets and systems ' . Theory and applications , 2007 .

[87]  Wojtek Michalowski,et al.  DEVELOPING AN EMERGENCY ROOM DIAGNOSTIC CHECK LIST USING ROUGH SETS : A CASE STUDY OF APPENDICITIS , 1996 .

[88]  L. Polkowski,et al.  Concerning mathematical morphology of almost rough sets , 1994 .

[89]  M. A. Klopotek,et al.  Qualitative Versus Quantitative Interpretation of the Mathematical Theory of Evidence , 1997, ISMIS.

[90]  Sankar K. Pal,et al.  Roughness of a Fuzzy Set , 1996, Inf. Sci..

[91]  J. Kacprzyk,et al.  How different are social choice functions: a rough sets approach , 1996, Quality and Quantity.

[92]  Witold Lipski,et al.  On Databases with Incomplete Information , 1981, JACM.

[93]  Glenn Shafer,et al.  A Mathematical Theory of Evidence , 2020, A Mathematical Theory of Evidence.

[94]  J. Krysiński Rough sets in the analysis of the structure-activity relationships of antifungal imidazolium compounds. , 1995, Journal of pharmaceutical sciences.

[95]  R. Bharat Rao,et al.  Building Models to Support Synthesis in Early Stage Product Design , 1993, AAAI.

[96]  T. Iwiński Algebraic approach to rough sets , 1987 .

[97]  Bernard Roy,et al.  Multicriteria programming of water supply systems for rural areas , 1992 .

[98]  Robert D. Logcher,et al.  Computer-Aided Cooperative Product Development , 1989, Lecture Notes in Computer Science.

[99]  Ewa Orlowska,et al.  Modal Logics in the Theory of Information Systems , 1984, Math. Log. Q..

[100]  Didier Dubois,et al.  Putting Rough Sets and Fuzzy Sets Together , 1992, Intelligent Decision Support.

[101]  Zdzisław Pawlak,et al.  Rough sets based decision algorithm for treatment of duodenal ulcer by HSV , 1987 .

[102]  Dimiter Vakarelov,et al.  A model logic for similarity relations in pawlak knowledge representation systems , 1991, Fundam. Informaticae.

[103]  Andrzej Skowron,et al.  Rough sets and concurrency , 1993 .

[104]  Ron Kohavi,et al.  Lazy Decision Trees , 1996, AAAI/IAAI, Vol. 1.

[105]  J. Roelandt,et al.  Prognostic value of dobutamine-atropine stress technetium-99m sestamibi perfusion scintigraphy in patients with chest pain. , 1996, Journal of the American College of Cardiology.

[106]  Ewa Orlowska,et al.  A logic of indiscernibility relations , 1984, Symposium on Computation Theory.

[107]  Marzena Kryszkiewicz,et al.  Generation of Rules from Incomplete Information Systems , 1997, PKDD.

[108]  I︠u︡. A. Shreĭder Equality, resemblance, and order , 1975 .

[109]  Zdzisław Pawlak,et al.  ROUGH CONTROL APPLICATION OF ROUGH SET THEORY TO CONTROL , 1996 .

[110]  Zbigniew W. Ras,et al.  Cooperative Knowledge-Based Systems , 1996, Intell. Autom. Soft Comput..

[111]  Andrzej Skowron,et al.  The Discernibility Matrices and Functions in Information Systems , 1992, Intelligent Decision Support.

[112]  Andrzej Skowron,et al.  Parallel Communicating Grammar Systems with Negotiation , 1996, Fundam. Informaticae.

[113]  J. Grzymala-Busse,et al.  A Comparison of Less Specific Versus More Specific Rules for Preterm Birth Prediction , 1996 .

[114]  Vijay V. Raghavan,et al.  Data Mining: Trends in Research and Development , 1997 .

[115]  D. Vanderpooten Similarity Relation as a Basis for Rough Approximations , 1995 .

[116]  Zdzislaw Pawlak,et al.  Algebraic theory of independence in information systems , 1991, Fundam. Informaticae.

[117]  Roman Słowiński,et al.  Rough Set Analysis of Multi-Attribute Decision Problems , 1994 .

[118]  Andrzej Skowron,et al.  Adaptive Decision-Making by Systems of Cooperating Intelligent Agents Organized on Rough Mereological Principles , 1996, Intell. Autom. Soft Comput..

[119]  Slavka Bodjanova,et al.  Approximation of fuzzy concepts in decision making , 1997, Fuzzy Sets Syst..

[120]  H.C.M. de Swart,et al.  Different Approaches to Knowledge, Common Knowledge and Aumann's Theorem , 1995 .

[121]  R. Słowiński,et al.  Rough sets approach to analysis of data from peritoneal lavage in acute pancreatitis. , 1988, Medical informatics = Medecine et informatique.

[122]  Maciej Modrzejewski,et al.  Feature Selection Using Rough Sets Theory , 1993, ECML.

[123]  Hiroshi Tanaka,et al.  Automated Discovery of Medical Expert System Rules from Clinical Databases Based on Rough Sets , 1996, KDD.

[124]  Hiroshi Tanaka,et al.  Induction of Expert System Rules from Databases Based on Rough Set Theory and Resampling Methods , 1996, ISMIS.

[125]  J. Kacprzyk,et al.  Incomplete Information: Rough Set Analysis , 1997 .

[126]  S. Marcus Tolerance rough sets, Čech topologies, learning processes , 1994 .

[127]  Marshall Burns,et al.  Automated Fabrication: Improving Productivity in Manufacturing , 1993 .

[128]  S. K. Michael Wong,et al.  Comparison of Rough-Set and Statistical Methods in Inductive Learning , 1986, Int. J. Man Mach. Stud..

[129]  Lotfi A. Zadeh,et al.  Fuzzy logic = computing with words , 1996, IEEE Trans. Fuzzy Syst..

[130]  S Tsumoto,et al.  Knowledge discovery in clinical databases based on variable precision rough set model. , 1995, Proceedings. Symposium on Computer Applications in Medical Care.

[131]  Z. Pawlak,et al.  Decision analysis using rough sets , 1994 .

[132]  D. Dubois,et al.  Comparison of two fuzzy set-based logics: similarity logic and possibilistic logic , 1995, Proceedings of 1995 IEEE International Conference on Fuzzy Systems..

[133]  S. K. Michael Wong,et al.  Rough Sets: Probabilistic versus Deterministic Approach , 1988, Int. J. Man Mach. Stud..

[134]  Jason Catlett,et al.  On Changing Continuous Attributes into Ordered Discrete Attributes , 1991, EWSL.

[135]  Michael Hadjimichael,et al.  Rough Sets-Based Study of Voter Preference in 1988 U.S.A. Presidential Election , 1992, Intelligent Decision Support.

[136]  Hiroshi Tanaka,et al.  Automated Discovery of Functional Components of Proteins from Amino-Acid Sequences Based on Rough Sets and Change of Representation , 1995, KDD.

[137]  Andrzej Skowron,et al.  Analytical Morphology: Mathematical Morphology of Decision Tables , 1996, Fundam. Informaticae.

[138]  Andrzej Skowron,et al.  Synthesis of Adaptive Decision Systems from Experimental Data , 1995, SCAI.

[139]  Gianpiero Cattaneo,et al.  Generalized Rough Sets (Preclusivity Fuzzy-Intuitionistic (BZ) Lattices) , 1997, Stud Logica.

[140]  Wojciech Ziarko,et al.  Rough Sets and Knowledge Discovery: An Overview , 1993, RSKD.

[141]  Randy Kerber,et al.  ChiMerge: Discretization of Numeric Attributes , 1992, AAAI.

[142]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[143]  R. Słowiński Intelligent Decision Support: Handbook of Applications and Advances of the Rough Sets Theory , 1992 .

[144]  Jerzy W. Grzymala-Busse,et al.  A Machine Learning Experiment to Determine Part of Speech from Word-Endings , 1997, ISMIS.

[145]  Gianpiero Cattaneo,et al.  Abstract rough approximation spaces (bridging the gap between fuzziness and roughness) , 1996, Proceedings of IEEE 5th International Fuzzy Systems.

[146]  Z. INFORMATION SYSTEMS THEORETICAL FOUNDATIONS , 2022 .

[147]  Lotfi A. Zadeh,et al.  Similarity relations and fuzzy orderings , 1971, Inf. Sci..

[148]  W. Ziarko,et al.  An application of DATALOGIC/R knowledge discovery tool to identify strong predictive rules in stock market data , 1993 .

[149]  C. J. V. Rijsbergen,et al.  Rough Sets, Fuzzy Sets and Knowledge Discovery , 1994, Workshops in Computing.

[150]  A Wakulicz-Deja,et al.  Diagnose progressive encephalopathy applying the rough set theory. , 1997, International journal of medical informatics.

[151]  Jerzy Krysinski,et al.  Analysis of Structure - Activity Relationships of Quaternary Ammonium Compounds , 1992, Intelligent Decision Support.

[152]  Simon Kasif,et al.  Induction of Oblique Decision Trees , 1993, IJCAI.

[153]  S Summers,et al.  The use of machine learning program LERS-LB 2.5 in knowledge acquisition for expert system development in nursing. , 1991, Computers in nursing.

[154]  Wojciech Ziarko,et al.  Variable Precision Extension of Rough Sets , 1996, Fundam. Informaticae.

[155]  Andrzej Skowron,et al.  Tolerance Approximation Spaces , 1996, Fundam. Informaticae.

[156]  Andrzej Skowron,et al.  Towards an approximation theory of discrete problems, Part I , 1991, Fundam. Informaticae.

[157]  Ewa Orlowska,et al.  Kripke semantics for knowledge representation logics , 1990, Stud Logica.

[158]  S Tsumoto,et al.  Induction of medical expert system rules based on rough sets and resampling methods. , 1994, Proceedings. Symposium on Computer Applications in Medical Care.

[159]  S. K. Wong,et al.  Comparison of the probabilistic approximate classification and the fuzzy set model , 1987 .

[160]  J W Grzymala-Busse,et al.  Algebraic properties of knowledge representation systems , 1986, ISMIS '86.

[161]  Yiyu Yao,et al.  Generalization of Rough Sets using Modal Logics , 1996, Intell. Autom. Soft Comput..

[162]  Roman Słowiński,et al.  Intelligent Decision Support , 1992, Theory and Decision Library.

[163]  Adam Mrózek,et al.  Rough Sets in Computer Implementation of Rule-Based Control of Industrial Processes , 1992, Intelligent Decision Support.

[164]  Wojciech Ziarko,et al.  Knowledge-Based Process Control Using Rough Sets , 1992, Intelligent Decision Support.

[165]  Lotfi A. Zadeh,et al.  Toward a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic , 1997, Fuzzy Sets Syst..

[166]  Z. Pawlak Rough set approach to knowledge-based decision support , 1997 .

[167]  Andrzej Skowron,et al.  From the Rough Set Theory to the Evidence Theory , 1991 .

[168]  Jouni Järvinen,et al.  A Representation of Dependence Spaces and Some Basic Algorithms , 1997, Fundam. Informaticae.

[169]  P. Lingras Rough Neural Networks , 1996 .

[170]  U. Höhle Quotients with respect to similarity relations , 1988 .

[171]  Andrzej Czyzewski,et al.  Speaker-Independent Recognition of Digits - Experiments with Neural Networks, Fuzzy Logic and Rough Sets , 1996, Intell. Autom. Soft Comput..

[172]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[173]  Cecylia Rauszer,et al.  Approximation Methods for Knowledge Representation Systems , 1993, ISMIS.

[174]  Zdzislaw Pawlak,et al.  Knowledge, reasoning and classifiaction: A rough set perspective , 1989, Bull. EATCS.

[175]  Z. Pawlak,et al.  Rough membership functions , 1994 .

[176]  J. A. Pomykala,et al.  On definability in the nondeterministic information system , 1988 .

[177]  C. Zopounidis,et al.  Rough-Set Sorting of Firms According to Bankruptcy Risk , 1994 .

[178]  Andrzej Skowron,et al.  Searching for Relational Patterns in Data , 1997, PKDD.

[179]  Helena Rasiowa,et al.  Logic Approximating Sequences of Sets , 1987 .

[180]  Thomas G. Dietterich,et al.  Learning Boolean Concepts in the Presence of Many Irrelevant Features , 1994, Artif. Intell..

[181]  lêzak,et al.  HYPERPLANE-BASED NEURAL NETWORKS FOR REAL-VALUED DECISION TABLES , 1997 .

[182]  Helena Rasiowa,et al.  Approximation Reasoning and Scott's Information Systems , 1987, ISMIS.

[183]  Adam Mrózek,et al.  Knowledge Representation in Fuzzy and Rough Controllers , 1997, Fundam. Informaticae.

[184]  Yiyu Yao,et al.  Generalized probabilistic rough set models , 1996, Soft Computing in Intelligent Systems and Information Processing. Proceedings of the 1996 Asian Fuzzy Systems Symposium.

[185]  U. Wybraniec-Skardowska On a generalization of approximation space , 1989 .

[186]  W. Zakowski APPROXIMATIONS IN THE SPACE (U,π) , 1983 .

[187]  Wojciech Ziarko,et al.  A methodology for stock market analysis utilizing rough set theory , 1995, Proceedings of 1995 Conference on Computational Intelligence for Financial Engineering (CIFEr).

[188]  Ivo Düntsch,et al.  Statistical evaluation of rough set dependency analysis , 1997, Int. J. Hum. Comput. Stud..

[189]  Edmund H. Durfee,et al.  Coordination of distributed problem solvers , 1988 .

[190]  Krzysztof Krawiec,et al.  ROUGH SET REDUCTION OF ATTRIBUTES AND THEIR DOMAINS FOR NEURAL NETWORKS , 1995, Comput. Intell..

[191]  Krzysztof Slowinski,et al.  Rough Sets Approach to Analysis of Data of Diagnostic Peritoneal Lavage Applied for Multiple Injuries Patients , 1993, RSKD.

[192]  Tony R. Martinez,et al.  Improved Heterogeneous Distance Functions , 1996, J. Artif. Intell. Res..

[193]  Jacques Teghem,et al.  Use of "Rough Sets" Method to Draw Premonitory Factors for Earthquakes by Emphasing Gas Geochemistry: The Case of a Low Seismic Activity Context, in Belgium , 1992, Intelligent Decision Support.

[194]  Z. Pawlak,et al.  Rough set approach to multi-attribute decision analysis , 1994 .

[195]  Ewa Orlowska,et al.  Kripke models with relative accessibility and their applications to inferences from incomplete information , 1988 .

[196]  Zbigniew W. Ras,et al.  Collaboration Control in Distributed Knowledge-Based Systems , 1997, Inf. Sci..

[197]  J W Grzymala-Busse,et al.  Improving prediction of preterm birth using a new classification scheme and rule induction. , 1994, Proceedings. Symposium on Computer Applications in Medical Care.

[198]  J. Krysiński Rough sets approach to the analysis of the structure-activity relationship of quaternary imidazolium compounds. , 1990, Arzneimittel-Forschung.

[199]  Akira Nakamura,et al.  A rough logic based on incomplete information and its application , 1996, Int. J. Approx. Reason..

[200]  J. Krysinski,et al.  Grob-Mengen-Theorie in der Analyse der Struktur-Wirkungs-Beziehungen von quartären Pyridiniumverbindungen , 1991 .

[201]  Nick Cercone,et al.  Generation of Multiple Knowledge from Databases Based on Rough Sets Theory , 1997 .

[202]  Andrzej Skowron,et al.  Rough mereology: A new paradigm for approximate reasoning , 1996, Int. J. Approx. Reason..

[203]  D. Dubois,et al.  Twofold fuzzy sets and rough sets—Some issues in knowledge representation , 1987 .

[204]  Constantin Zopounidis,et al.  Application of the Rough Set Approach to Evaluation of Bankruptcy Risk , 1995 .

[205]  Ivo Düntsch,et al.  A Logic for Rough Sets , 1997, Theor. Comput. Sci..

[206]  David J. Spiegelhalter,et al.  Machine Learning, Neural and Statistical Classification , 2009 .

[207]  Jerzy W. Grzymala-Busse,et al.  ESEP: An Expert System for Environmental Protection , 1993, RSKD.

[208]  Helena Rasiowa,et al.  Mechanical proof systems for logic: Reaching consensus by groups of intelligent agents , 1991, Int. J. Approx. Reason..

[209]  Maria E. Orlowska,et al.  Maintenance of Knowledge in Dynamic Information Systems , 1992, Intelligent Decision Support.

[210]  Usama M. Fayyad,et al.  The Attribute Selection Problem in Decision Tree Generation , 1992, AAAI.

[211]  Thomas G. Dietterich What is machine learning? , 2020, Archives of Disease in Childhood.

[212]  Simon Kasif,et al.  OC1: A Randomized Induction of Oblique Decision Trees , 1993, AAAI.

[213]  Padmini Srinivasan,et al.  The Importance of Rough Approximations for Information Retrieval , 1991, Int. J. Man Mach. Stud..

[214]  Dimiter Vakarelov,et al.  A Duality Between Pawlak's Information Systems and Bi-Consequence Systems with Applications to First-Order and Modal Characterizations of some Informational Relations , 1995, WOCFAI.

[215]  Hiroshi Tanaka,et al.  PRIMEROSE: Probabilistic Rule Induction Method Based on Rough Set Theory , 1993, RSKD.

[216]  T. Y. Lin tylin,et al.  NEIGHBORHOOD SYSTEMS : A Qualitative Theory for Fuzzy and Rough , 1995 .

[217]  Andrzej Skowron,et al.  Rough Mereology , 1994, ISMIS.

[218]  Luis Fariñas del Cerro,et al.  DAL - A Logic for Data Analysis , 1985, Theor. Comput. Sci..

[219]  L. Polkowski,et al.  Implementing fuzzy containment via rough inclusions: rough mereological approach to distributed problem solving , 1996, Proceedings of IEEE 5th International Fuzzy Systems.

[220]  Andrzej Skowron,et al.  Application of Modal Logics and Rough Sets for Classifying Objects , 1995, WOCFAI.

[221]  Ibrahim Tentush,et al.  On minimal absorbent sets for some types of tolerance relations , 1995 .

[222]  Urszula Wybraniec-Skardowska,et al.  Generalized Rough Sets in Contextual Spaces , 1997 .

[223]  Zdzislaw Pawlak,et al.  Hard and Soft Sets , 1993, RSKD.