Unary functions

We consider F the class of finite unary functions, B the class of finite bijections and F k , k 1 , the class of finite k - 1 functions. We calculate Ramsey degrees for structures in F and F k , and we show that B is a Ramsey class. We prove Ramsey property for the class OF which contains structures of the form ( A , f , ? ) where ( A , f ) ? F and ? is a linear ordering on the set A . We also consider a generalization M n F , n 1 , of the class F which contains finite structures of the form ( A , f 1 , . . . , f n ) where each f i is a unary function on the set A . Finally we give a topological interpretation of our results by expanding the list of extremely amenable groups and by calculating various universal minimal flows.

[1]  Ramsey varieties of finite groups , 1988 .

[2]  L. Nguyen Van Th'e,et al.  Structural Ramsey theory of metric spaces and topological dynamics of isometry groups , 2008, 0804.1593.

[3]  Jakub Jasinski Ramsey degrees of boron tree structures , 2013, Comb..

[4]  Lionel Nguyen More on the Kechris-Pestov-Todorcevic correspondence: precompact expansions , 2012 .

[5]  R. Woodrow,et al.  Countable ultrahomogeneous undirected graphs , 1980 .

[6]  Sheila Oates-Williams Ramsey Varieties of Finite Groups , 1988, Eur. J. Comb..

[7]  Willem L. Fouché Symmetries and Ramsey properties of trees , 1999, Discret. Math..

[8]  Nguyen Van The,et al.  Structural Ramsey theory of metric spaces and topological dynamics of isometry groups , 2008 .

[9]  Vojtech Rödl,et al.  Partitions of Finite Relational and Set Systems , 1977, J. Comb. Theory A.

[10]  Frank Plumpton Ramsey,et al.  On a Problem of Formal Logic , 1930 .

[11]  V. Pestov,et al.  Fraïssé Limits, Ramsey Theory, and topological dynamics of automorphism groups , 2003 .

[12]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[13]  Miodrag Sokic,et al.  Ramsey Properties of Finite Posets II , 2012, Order.

[14]  Roland Fraïssé Theory of relations , 1986 .

[15]  A. Hales,et al.  Regularity and Positional Games , 1963 .

[16]  Hans Jürgen Prömel Induced Partition Properties of Combinatorial Cubes , 1985, J. Comb. Theory, Ser. A.

[17]  R. Graham,et al.  Ramsey’s theorem for $n$-parameter sets , 1971 .

[18]  James H. Schmerl,et al.  Countable homogeneous partially ordered sets , 1979 .

[19]  Jaroslav Nesetril,et al.  Metric spaces are Ramsey , 2007, Eur. J. Comb..

[20]  Vladimir Pestov,et al.  Dynamics of Infinite-dimensional Groups - The Ramsey-Dvoretzky-Milman Phenomenon , 2006, University lecture series.

[21]  A. Hales,et al.  Regularity and Positional Games , 1963 .

[22]  Bernd Voigt The Partition Problem for Finite Abelian Groups , 1980, J. Comb. Theory, Ser. A.

[23]  Vojtech Rödl,et al.  Ramsey Classes of Set Systems , 1983, J. Comb. Theory, Ser. A.

[24]  G. Cherlin,et al.  The Classification of Countable Homogeneous Directed Graphs and Countable Homogeneous N-Tournaments , 1998 .

[25]  Walter A. Deuber Partition theorems for unary algebras , 1979, Discret. Math..

[26]  R L Graham,et al.  Ramsey's Theorem for a Class of Categories. , 1972, Proceedings of the National Academy of Sciences of the United States of America.

[27]  Alexander S. Kechris,et al.  The Descriptive Set Theory of Polish Group Actions: DESCRIPTIVE SET THEORY , 1996 .

[28]  Keith R. Milliken,et al.  A Ramsey Theorem for Trees , 1979, J. Comb. Theory, Ser. A.

[29]  Dynamical properties of the automorphism groups of the random poset and random distributive lattice , 2012 .

[30]  Leo Harrington,et al.  Models Without Indiscernibles , 1978, J. Symb. Log..