Region–based theory of discrete spaces: A proximity approach

We introduce Boolean proximity algebras as a generalization of Efremovič proximities which are suitable in reasoning about discrete regions. Following Stone’s representation theorem for Boolean algebras, it is shown that each such algebra is isomorphic to a substructure of a complete and atomic Boolean proximity algebra.

[1]  G. Winskel What Is Discrete Mathematics , 2007 .

[2]  A. Galton Qualitative Spatial Change , 2001 .

[3]  W. J. Thron Proximity structures and grills , 1973 .

[4]  M. Stone Topological representations of distributive lattices and Brouwerian logics , 1938 .

[5]  Ian Pratt-Hartmann,et al.  A Complete Axiom System for Polygonal Mereotopology of the Real Plane , 1998, J. Philos. Log..

[6]  Antony Galton,et al.  The Mereotopology of Discrete Space , 1999, COSIT.

[7]  Anthony G. Cohn,et al.  Computing Transivity Tables: A Challenge For Automated Theorem Provers , 1992, CADE.

[8]  Labib Haddad,et al.  Sur quelques points de topologie générale. Théorie des nasses et des tramails , 1970 .

[9]  Ivo Düntsch,et al.  A note on proximity spaces and connection based mereology , 2001, FOIS.

[10]  M. Stone The theory of representations for Boolean algebras , 1936 .

[11]  Dimiter Vakarelov,et al.  Modal Logics for Local and Global Similarity Relations , 1997, Fundam. Informaticae.

[12]  Michael Winter,et al.  A representation theorem for Boolean contact algebras , 2005, Theor. Comput. Sci..

[13]  M. Stone,et al.  The Theory of Representation for Boolean Algebras , 1936 .

[14]  Bowman L. Clarke,et al.  A calculus of individuals based on "connection" , 1981, Notre Dame J. Formal Log..

[15]  Ivo Düntsch,et al.  A Proximity Approach to Some Region-Based Theories of Space , 2002, J. Appl. Non Class. Logics.

[16]  Michael B. Smyth,et al.  Semi-Metrics, Closure Spaces and Digital Topology , 1995, Theor. Comput. Sci..

[17]  Zdeněk Frolík,et al.  Topological spaces (Sections 14-22) , 1966 .